精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形中,,将直角梯形沿对角线折起,使点点位置,则四面体的体积的最大值为________,此时,其外接球的表面积为________

【答案】

【解析】

四面体的体积的最大值时,面,点到面的距离为斜边上的高.求得即可求得四面体的体积的最大值,的外心为斜边的中点的外心为,过作面的垂线,过作面的垂线,两垂线的交点即为球心,由面,即可得即为球心,利用正弦定理即可得的外接圆半径即为球半径.

如图,四面体的体积的最大值时,面

到面的距离为斜边上的高

故最大体积为

的外心为斜边的中点的外心为

作面的垂线,过作面的垂线,两垂线的交点即为球心.

∵面

即为球心,的外接圆半径即为球半径.

∴外接球的表面积为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于不同的两点.

1)若线段的中点为,求直线的方程;

2)若的斜率为,且过椭圆的左焦点的垂直平分线与轴交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

5

18

19

6

1

图1:乙套设备的样本的频率分布直方图

(Ⅰ)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;

(Ⅱ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

(Ⅲ)根据表1和图1,对两套设备的优劣进行比较.

附:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 xOy 中,已知椭圆 C1(a>b>0)的离心率为,且过点,点P在第四象限, A为左顶点, B为上顶点, PAy轴于点CPBx轴于点D.

(1) 求椭圆 C 的标准方程;

(2) PCD 面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,四边形是矩形,平面平面的中点,为线段上的一点.

1)求证:

2)若二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据国家统计局发布的数据,201911月全国CPI(居民消费价格指数),同比上涨4.5%CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是201911CPI一篮子商品权重,根据该图,下列结论错误的是(

A.CPI一篮子商品中所占权重最大的是居住

B.CPI一篮子商品中吃穿住所占权重超过50%

C.猪肉在CPI一篮子商品中所占权重约为2.5%

D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4 — 4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为).

1)分别写出直线的普通方程与曲线的直角坐标方程;

2)已知点,直线与曲线相交于两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一副直角三角板(如图1)拼接,将折起,得到三棱锥(如图2).

(1)若分别为的中点,求证: 平面

(2)若平面平面,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学小组从医院和气象局获得20181月至6月份每月20的昼夜温差,()和患感冒人数(/人)的数据,画出如图的折线图.

1)建立关于的回归方程(精确到0.01),预测20191月至6月份昼夜温差为时患感冒的人数(精确到整数);

2)求的相关系数,并说明的相关性的强弱(若,则认为具有较强的相关性),

参考数据:

相关系数:,回归直线方程是

查看答案和解析>>

同步练习册答案