精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足f(x)=2f(
1
x
),当x∈[1,3]时,f(x)=lnx在区间[
1
3
,3]上,函数g(x)=f(x)-ax(a>0)恰有一个零点,则实数a的取值范围是
 
考点:函数零点的判定定理
专题:计算题,作图题,函数的性质及应用
分析:根据题意画出图形,结合a≤kOA=6ln3,当直线与曲线f(x)=lnx相切时,可解得k=
1
e
;进而求出a的取值范围.
解答: 解:当x∈[
1
3
,1]时,
1
x
∈[1,3],
则f(x)=2f(
1
x
)=2ln
1
x
=-2lnx.
在坐标系内画出分段函数图象:
由题意可知:a≤kOA=6ln3,
当直线与曲线f(x)=lnx相切时,
解得k=
1
e
;所以a的取值范围是
1
e
<a≤6ln3.
故答案为:
1
e
<a≤6ln3.
点评:本题考查了函数的零点的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合U=R,A={x∈N|x≤3},B={-2,-1,0,1,2},则(∁UA)∩B等于(  )
A、{-2,-1,0}
B、{-2,-1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn,若a2=4,2Sn=an(n+1),求a1,a3及数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若从区间(0,e)内随机取两个数,则这两个数之积不小于e的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logax的图象经过点(4,2)
(1)求函数的解析式;
(2)解不等式f(x2-x)>f(x+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形ABCD中,若E、F、G、H分别为AB、BC、CD、DA边上的中点,则下列各式中成立的是(  )
A、
EB
+
BF
+
EH
+
GH
=0
B、
EB
+
FC
+
EH
-
EG
=0
C、
EF
+
FG
+
EH
+
GH
=0
D、
EF
-
FB
+
CG
+
GH
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.
(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面2x2列联表,并判断是否有90%的把握认为“成绩优秀”与教学方式有关.
甲班(A方式)乙班(B方式)总计
成绩优秀
成绩不优秀
总计
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P((K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x -k2+k+2,(k∈Z)满足f(2)<f(3).
(1)求实数k的值,并求出相应的函数f(x)解析式;
(2)对于(1)中的函数f(x),试判断是否存在正数q,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上值域为[-4,
17
8
]
.若存在,求出此q.

查看答案和解析>>

科目:高中数学 来源: 题型:

对数式logab=x化为指数式为(  )
A、ab=x
B、ax=b
C、xa=b
D、xb=a

查看答案和解析>>

同步练习册答案