精英家教网 > 高中数学 > 题目详情
16.数列{an}中,a1=$\frac{3}{2}$,2an+1=an+n+2
(1)证明数列{an-n}是等比数列;
(2)设bn=2nan,求{bn}的前n项和Tn

分析 (1)由已知得2an+1-2n-2=an-n,由此能证明数列{an-n}是首项为$\frac{1}{2}$,公比为$\frac{1}{2}$的等比数列.
(2)求出${a}_{n}=n+(\frac{1}{2})^{n}$,从而bn=2nan=n•2n+1,由此利用错位相减法能求出数列{bn}的前n项和.

解答 证明:(1)∵数列{an}中,a1=$\frac{3}{2}$,2an+1=an+n+2,
∴2an+1-2n-2=an-n,
∴$\frac{{a}_{n+1}-(n+1)}{{a}_{n}-n}$=$\frac{1}{2}$,
∵${a}_{1}-1=\frac{3}{2}-1$=$\frac{1}{2}$,
∴数列{an-n}是首项为$\frac{1}{2}$,公比为$\frac{1}{2}$的等比数列,
解:(2)∵数列{an-n}是首项为$\frac{1}{2}$,公比为$\frac{1}{2}$的等比数列,
∴an-n=$(\frac{1}{2})^{n}$,
∴${a}_{n}=n+(\frac{1}{2})^{n}$,
∴bn=2nan=n•2n+1,
∴{bn}的前n项和:
Tn=2+2•22+3•23+…+n•2n+n,①
2Tn=22+3•24+…+n•2n+1+2n,②
①-②,得:-Tn=2+22+23+…+2n-n•2n+1-n
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1-n
=(1-n)•2n+1-n-2.
∴Tn=(n-1)•2n+1+n+2.

点评 本题考查等比数列的证明,考查等比数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(2,3),若$\overrightarrow{a}$+$\overrightarrow{c}$=2$\overrightarrow{b}$,O是坐标原点.
(1)求$\overrightarrow{c}$;
(2)若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,求点A,B的坐标;
(3)在(2)的条件下,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求值:
(1)cos20°•cos40°•cos80°;
(2)tan70°•cos10°•($\sqrt{3}$tan20°-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方形ABCD中,AB=AD=2,M,N分别为边BC,CD上的两个动点且MN=$\sqrt{2}$,则$\overline{AM}$•$\overline{AN}$的取值范围为(  )
A.[4,8-2$\sqrt{2}$]B.[4-2$\sqrt{2}$,8]C.[4,8+2$\sqrt{2}$]D.[4-2$\sqrt{2}$,8-2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足|x|+|y|≤1,则|4x+y-2|+|3-x-2y|的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等差数列{an}中,S5=28,S10=36,则S15等于24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn=2n-1,数列{bn}满足b1=0,bn+1-bn=2n(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)若Cn=$\frac{{a}_{n}•{b}_{n}}{n}$,求数列{Cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l1,l2的方程分别是l1:A1x+B1y+C1=0(A1,B2不同时为0),l2:A2x+B2y+C2=0(A1、B2不同时为0),且A1A2+B1B2=0,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=cos($\frac{π}{3}$+x)•cos($\frac{π}{3}$-x),g(x)=$\frac{1}{2}$sin2x-$\frac{1}{4}$.
(1)化简f(x);
(2)求函数f(x)的最小正周期;
(3)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

查看答案和解析>>

同步练习册答案