精英家教网 > 高中数学 > 题目详情

【题目】某品牌奶茶公司计划在A地开设若干个连锁加盟店,经调查研究,加盟店的个数x与平均每个店的月营业额y(万元)具有如下表所示的数据关系:

x

2

4

6

8

10

y

20.9

20.2

19

17.8

17.1

(1)求y关于x的线性回归方程;

(2)根据(1)中的结果分析,为了保证平均每个加盟店的月营业额不少于14.6万元,则A地开设加盟店的个数不能超过几个?

参考公式:线性回归方程中的斜率和截距的最小二乘估计公式分别为

【答案】(1);(2)14.

【解析】

(1)先求均值,再代入公式求,即得结果;

(2)根据线性回归方程列不等式,解得结果.

(1)依题意,

.

所以

所以

故所求的线性回归方程为.

(2)依题意,令,解得.

因为,所以A地开设加盟店的个数不能超过14.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥SABCD的底面是正方形,SD⊥平面ABCD,SDADa,ESD上的点,且DEa(0<≦1). w.w.w..c.o.m

(Ⅰ)求证:对任意的01),都有AC⊥BE:

(Ⅱ)若二面角C-AE-D的大小为600C,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体ABCA1B1C1A1AB1BC1C均垂直于平面ABCABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

Ⅰ)证明:AB1⊥平面A1B1C1

求直线AC1与平面ABB1所成的角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面垂直直角梯形ABPE所在的平面于直线AB,且ABBP2ADAE1AEAB,且AEBP.

1)求平面PCD与平面ABPE所成的二面角的余弦值;

2)在线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某居民小区为缓解业主停车难的问题,拟对小区内一块扇形空地进行改建.如图所示,平行四边形区域为停车场,其余部分建成绿地,点在围墙弧上,点和点分别在道路和道路上,且米,,设

(1)求停车场面积关于的函数关系式,并指出的取值范围;

(2)当为何值时,停车场面积最大,并求出最大值(精确到平方米).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若当时,取得极值,求的值,并求的单调区间.

(2)存在两个极值点,求的取值范围,并证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体是正三棱柱(底面是正三角形的直棱柱)沿平面切除一部分所得,其中平面为原正三棱柱的底面,,点D的中点.

(1)求证:平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)设,证明:在区间内存在唯一的零点;

2)设,若对任意,有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】端午假期即将到来,永辉超市举办浓情端午高考加油有奖促销活动,凡持高考准考证考生及家长在端年节期间消费每超过600元(含600元),均可抽奖一次,抽奖箱里有10个形状、大小完全相同的小球(其中红球有3个,黑球有7个),抽奖方案设置两种,顾客自行选择其中的一种方案.

方案一:

从抽奖箱中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:

从抽奖箱中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200.每次摸取1球,连摸3次,每摸到1

1)若小南、小开均分别消费了600元,且均选择抽奖方案一,试求他们均享受免单优惠的概率;

2)若小杰消费恰好满1000元,试比较说明小杰选择哪一种抽奖方案更合算?

查看答案和解析>>

同步练习册答案