【题目】某品牌奶茶公司计划在A地开设若干个连锁加盟店,经调查研究,加盟店的个数x与平均每个店的月营业额y(万元)具有如下表所示的数据关系:
x | 2 | 4 | 6 | 8 | 10 |
y | 20.9 | 20.2 | 19 | 17.8 | 17.1 |
(1)求y关于x的线性回归方程;
(2)根据(1)中的结果分析,为了保证平均每个加盟店的月营业额不少于14.6万元,则A地开设加盟店的个数不能超过几个?
参考公式:线性回归方程中的斜率和截距的最小二乘估计公式分别为
,
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1). w.w.w..c.o.m
(Ⅰ)求证:对任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知矩形ABCD所在平面垂直直角梯形ABPE所在的平面于直线AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD与平面ABPE所成的二面角的余弦值;
(2)在线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某居民小区为缓解业主停车难的问题,拟对小区内一块扇形空地进行改建.如图所示,平行四边形区域为停车场,其余部分建成绿地,点在围墙弧上,点和点分别在道路和道路上,且米,,设.
(1)求停车场面积关于的函数关系式,并指出的取值范围;
(2)当为何值时,停车场面积最大,并求出最大值(精确到平方米).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体是正三棱柱(底面是正三角形的直棱柱)沿平面切除一部分所得,其中平面为原正三棱柱的底面,,点D为的中点.
(1)求证:平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】端午假期即将到来,永辉超市举办“浓情端午高考加油”有奖促销活动,凡持高考准考证考生及家长在端年节期间消费每超过600元(含600元),均可抽奖一次,抽奖箱里有10个形状、大小完全相同的小球(其中红球有3个,黑球有7个),抽奖方案设置两种,顾客自行选择其中的一种方案.
方案一:
从抽奖箱中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.
方案二:
从抽奖箱中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.每次摸取1球,连摸3次,每摸到1次
(1)若小南、小开均分别消费了600元,且均选择抽奖方案一,试求他们均享受免单优惠的概率;
(2)若小杰消费恰好满1000元,试比较说明小杰选择哪一种抽奖方案更合算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com