【题目】某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图因故都受到不同程度的损坏,但可见部分如下,据此解答如下问题:
(Ⅰ)求分数在[50,60)的频率及全班人数;
(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(Ⅲ)若规定:75(包含75分)分以上为良好,90分(包含90分)以上为优秀,要从分数在良好以上的试卷中任取两份分析学生失分情况,设在抽取的试卷中,分数为优秀的试卷份数为X,求X的概率分布列及数学期望.
【答案】解:(Ⅰ)由频率分布直方图得分数在[50,60)的频率为0.008×10=0.08,
由茎叶图得分类在[50,60)的人数为2人,
∴全班人数为: =25人.
(Ⅱ)由茎叶图得分数在[80,90)之间的频数为:
25﹣2﹣7﹣10﹣2=4人,
∵成绩为[80,90)间的频数为4,
∴频率分布直方图中[80,90)间的矩形的高为: =0.016.
(Ⅲ)由已知得X的可能取值为0,1,2,
由茎叶图知分数在良好以上有11人,其中分数为优秀有2人,
∴P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
∴X的分布列为:
X | 0 | 1 | 2 |
P |
E(X)= =
【解析】(Ⅰ)由频率分布直方图能求出分数在[50,60)的频率,由茎叶图得分类在[50,60)的人数,由此能求出全班人数.(Ⅱ)由茎叶图能求出分数在[80,90)之间的频数,由此能求出频率分布直方图中[80,90)间的矩形的高.(Ⅲ)由已知得X的可能取值为0,1,2,由茎叶图知分数在良好以上有11人,其中分数为优秀有2人,由此能求出X的分布列和E(X).
【考点精析】掌握频率分布直方图和离散型随机变量及其分布列是解答本题的根本,需要知道频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线的参数方程为(为参数).以坐标原点为极点,以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若曲线上的点到直线的最大距离为6,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某住宅小区的平面图呈圆心角为的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路。
(1)已知某人从沿走到用了分钟,从沿走到用了分钟,若此人步行的速度为每分钟米,求该扇形的半径的长(精确到米)
(2)若该扇形的半径为,已知某老人散步,从沿走到,再从沿走到,试确定的位置,使老人散步路线最长。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.
(1)求异面直线与所成角的余弦值;
(2)设点是线段上的点,且满足,若直线平面,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE、BE,∠APE的平分线与AE、BE分别交于点C、D,其中∠AEB=30°.
(1)求证:
(2)求∠PCE的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.为了更好进行生涯规划,甲同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.
(1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;
(2)试根据茎叶图分析甲同学应在物理和历史中选择哪一门学科?并说明理由;
(3)甲同学发现,其物理考试成绩(分)与班级平均分(分)具有线性相关关系,统计数据如下表所示,试求当班级平均分为50分时,其物理考试成绩.
参考数据: ,,,.
参考公式:,,(计算时精确到).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的右焦点F(1,0),过F的直线l与椭圆C交于A,B两点,当l垂直于x轴时,|AB|=3.
(1)求椭圆C的标准方程;
(2)在x轴上是否存在点T,使得 为定值?若存在,求出点T坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com