【题目】已知椭圆的左顶点为A1,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于M、N两点,直线A1M的斜率为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为,求椭圆方程.
【答案】(Ⅰ);(Ⅱ).
【解析】
试题(Ⅰ)由已知得点坐标,由,得,解得;(Ⅱ)由(Ⅰ)得,,又外心在轴上,设为,则由,解得,故,所以经过点的切线方程为,联立椭圆方程,消去,得,则由弦长公式可得弦长为,解得,故所求方程为.
试题解析:(Ⅰ)由题意
因为A1(﹣a,0),所以
将b2=a2﹣c2代入上式并整理得(或a=2c)
所以
(Ⅱ)由(Ⅰ)得a=2c,(或)
所以A1(﹣2c,0),外接圆圆心设为P(x0,0)
由|PA1|=|PM|,得
解得:
所以
所以△A1MN外接圆在M处切线斜率为,设该切线与椭圆另一交点为C
则切线MC方程为,即
与椭圆方程3x2+4y2=12c2联立得7x2﹣18cx+11c2=0
解得
由弦长公式得
解得c=1
所以椭圆方程为
科目:高中数学 来源: 题型:
【题目】设,是两个平面,,是两条直线,下列命题错误的是( )
A.如果,,那么.
B.如果,,那么.
C.如果,,,那么.
D.如果内有两条相交直线与平行,那么.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,M是椭圆C的上顶点,,F2是椭圆C的焦点,的周长是6.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过动点P(1,t)作直线交椭圆C于A,B两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线C的极坐标方程为ρ﹣4cosθ+3ρsin2θ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M(1,0),倾斜角为.
(Ⅰ)求曲线C的直角坐标方程与直线l的参数方程;
(Ⅱ)若曲线C经过伸缩变换后得到曲线C′,且直线l与曲线C′交于A,B两点,求|MA|+|MB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,侧面底面,四边形为菱形,是边长为2的等边三角形,,点为的中点.
(1)若平面与平面交于直线,求证:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是首项为,公差为的等差数列,是首项为,公比为q的等比数列.
(1)设,若对均成立,求d的取值范围;
(2)若,证明:存在,使得对n=2,3,···,m+1均成立,并求d的取值范围(用表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com