精英家教网 > 高中数学 > 题目详情
用数学归纳法证明1+a+a2+…+an+1= (nN*,a≠1)时,在验证n=1成立时,左边应为某学生在证明等差数列前n项和公式时,证法如下:

(1)当n=1时,S1=a1显然成立;

(2)假设当n=k时,公式成立,即Sk=ka1+,

n=k+1时,Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+ d=(k+1)a1+ d

n=k+1时公式成立.

由(1)(2)知,对nN*时,公式都成立.

以上证明错误的是(  )

A.当n取第一个值1时,证明不对

B.归纳假设的写法不对

C.从n=kn=k+1时的推理中未用归纳假设

D.从n=kn=k+1时的推理有错误

C?

解析:在此同学的证明过程中,并未使用“假设n=k时,Sk=ka1+”条件,不符合数学归纳法的证明步骤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明1+2+3+…+n2=
n4+n2
2
,则当n=k+1时左端应在n=k的基础上加上(  )
A、k2+1
B、(k+1)2
C、
(k+1)4+(k+1)2
2
D、(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明1+
1
2
+
1
3
+…+
1
2n-1
<n
(n∈N+,n>1)时,第一步应验证不等式(  )
A、1+
1
2
<2
B、1+
1
2
+
1
3
<2
C、1+
1
2
+
1
3
<3
D、1+
1
2
+
1
3
+
1
4
<3

查看答案和解析>>

科目:高中数学 来源: 题型:

以下说法正确的是
③④
③④

①lg9•lg11>1.
②用数学归纳法证明“1+a+a2+…+an+1=
1-an+21-a
(n∈N*,a≠1)
”在验证n=1时,左边=1.
③已知f(x)是R上的增函数,a,b∈R,则f(a)+f(b)≥f(-a)+f(-b)的充要条件是a+b≥0.
④用分析法证明不等式的思维是从要证的不等式出发,逐步寻找使它成立的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明“1+
1
2
+
1
22
+…+
1
22n
=2-
1
22n
(n∈N*)
”在第一步验证取初始值时,左边计算的结果是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明1+x+x2+…+xn+1=
1-xn+2
1-x
(x≠1)
,在验证当n=1等式成立时,其左边为(  )

查看答案和解析>>

同步练习册答案