精英家教网 > 高中数学 > 题目详情
11.若函数y=f(x)是奇函数,且f(1)=3,则f(-1)=-3.

分析 直接利用函数的奇偶性求解函数值即可.

解答 解:函数y=f(x)是奇函数,且f(1)=3,
则f(-1)=-f(1)=-3.
故答案为:-3.

点评 本题考查函数值的求法,函数的奇偶性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,△ABF是等边三角形,棱EF∥BC,且EF=$\frac{1}{2}$BC.
(1)证明:EO∥平面ABF;
(2)若有OF⊥平面ABE,试求$\frac{BC}{CD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f1(x),f2(x)满足${∫}_{-a}^{a}$f1(x)•f2(x)dx=0(a>0),则称f1(x),f2(x)是区间[-a,a]上的一组Γ函数,给出下列四组函数:
①f1(x)=x2,f2(x)=x+1;
②f1(x)=cosx,f2(x)=tanx;
③f1(x)=2x-1,f2(x)=2x+1;
④f1(x)=sinx,f2(x)=cosx.
其中是区间[-$\frac{1}{2}$,$\frac{1}{2}$]上的Γ函数的组数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α∈(π,$\frac{3π}{2}$),cosα=-$\frac{5}{13}$,则tan($\frac{3π}{2}$+α)=-$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知log23<log22a,则a的取值范围是a>$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知sinα=$\frac{4}{5}$,则cos2α=(  )
A.$\frac{7}{25}$B.-$\frac{3}{5}$C.$\frac{24}{25}$D.-$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(x-1)8展开式中第4项的二项式系数是(  )
A.70B.-70C.56D.-56

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.根据下列条件写出抛物线的标准方程:
(1)经过点(-3,-1);
(2)焦点为直线3x-4y-12=0与坐标轴的交点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y=2x2+1,值域为{9}的“孪生函数”就有三个,那么解析式为y=log2(x2-1),值域为{1,5}的“孪生函数”共有(  )
A.6个B.7个C.8个D.9个

查看答案和解析>>

同步练习册答案