精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若是函数的极值点,求的值及函数的极值;

(2)讨论函数的单调性.

【答案】(1)见解析;(2)见解析

【解析】分析:(1)根据0求出a的值,再求函数f(x)的极值.(2)a分类讨论,求函数的单调性.

详解:(1)∵

由已知 ,解得

此时

时, 是增函数,

时, 是减函数,

所以函数处分别取得极大值和极小值

的极大值为,极小值为.

(2)由题意得

①当,即时,则当,,单调递减;

,,单调递增.

②当,即时,则当,单调递增;当,,单调递减.

③当,即时,则当时,,单调递增;当时,单调递减.

④当,即时,在定义域上单调递增.

综上:①当时,在区间上单调递减,在区间上单调递增;②当时,在定义域上单调递增;③当时, 在区间上单调递减,在区间上单调递增;④当 在区间上单调递减,在区间()上单调递增.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为考察某种药物预防疾病的效果,进行动物试验,调查了 105 个样本,统计结果为:服药的共有 55 个样本,服药但患病的仍有 10 个样本,没有服药且未患病的有 30个样本.

(1)根据所给样本数据完成 列联表中的数据;

(2)请问能有多大把握认为药物有效?

(参考公式:独立性检验临界值表

概率

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

患病

不患病

合计

服药

没服药

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处有极大值,则常数为( )

A. 2或6 B. 2 C. 6 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求圆心在直线2x-y-3=0上,且过点A(5,2)和点B(3,一2)的圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)写出它的振幅、周期、初相;

(2)五点法作出它在一个周期内的图象;

(3)说明的图象可由的图象经过怎样的变换而得到。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD= AD,若E、F分别为PC、BD的中点. (Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:EF⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

(2)若参赛选手共万人,用频率估计概率,试估计其中优秀等级的选手人数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》由如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为,现将该金杖截成长度相等的10段,记第段的重量为,且,若,则( )

A. 6 B. 5 C. 4 D. 7

查看答案和解析>>

同步练习册答案