精英家教网 > 高中数学 > 题目详情

【题目】南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S= ,a>b>c),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为

A. 82平方里 B. 84平方里

C. 85平方里 D. 83平方里

【答案】B

【解析】

由题意结合所给的面积公式计算三角形的面积即可.

原问题即当三角形的三边为时,三角形的面积Sabc

已知三角形的三边长度为,求该三角形的面积.

由题中的面积公式可得:.

即该三角形田面积为84平方里.

本题选择B选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线处的切线方程为,求的极值;

(2)若,是否存在,使的极值大于零?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设事件A表示“关于的一元二次方程有实根”,其中 为实常数.

(Ⅰ)若为区间[0,5]上的整数值随机数, 为区间[0,2]上的整数值随机数,求事件A发生的概率;

(Ⅱ)若为区间[0,5]上的均匀随机数, 为区间[0,2]上的均匀随机数,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的奇函数f(x)满足f(4﹣x)+f(x)=0,当﹣2<x<0时,f(x)=2x , 则f(log220)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2x+2 sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间 上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,g(x)=,若函数y=f(g(x))+a有三个不同的零点x1,x2,x3(其中x1<x2<x3),则2g(x1)+g(x2)+g(x3)的取值范围为______

【答案】

【解析】

首先研究函数和函数的性质,然后结合韦达定理和函数的性质求解2gx1)+gx2)+gx3)的取值范围即可.

由题意可知:

将对勾函数的图象向右平移一个单位,再向上平移一个单位即可得到函数的图象,其图象如图所示:

可得

据此可知在区间上单调递增,在区间上单调递减,

绘制函数图象如图所示:

的最大值为

函数yfgx))+a有三个不同的零点,则

,则

整理可得:,由韦达定理有:.

满足题意时,应有:

.

【点睛】

本题主要考查导数研究函数的性质,等价转化的数学思想,复合函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.

型】填空
束】
17

【题目】已知等比数列{}的前n项和为,且满足2+m(m∈R).

(Ⅰ)求数列{}的通项公式;

(Ⅱ)若数列{}满足,求数列{}的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,角A、B、C的对边分别为a、b、c,且 =1.
(1)求角A;
(2)若a=4 ,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有6个人排成一排照相,由于甲乙性格不合,所以要求甲乙不相邻,丙最高,要求丙站在最中间的两个位置中的一个位置上,则不同的站法有( )种.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2﹣ax,a∈R
(1)若f(x)在P(x0 , y0)(x∈[ ))处的切线方程为y=﹣2,求实数a的值;
(2)若x1 , x2(x1<x2)是函数f(x)的两个零点,f′(x)是函数f(x)的导函数,证明:f′( )<0.

查看答案和解析>>

同步练习册答案