精英家教网 > 高中数学 > 题目详情

【题目】已知圆 ,定点 是圆上的一动点,线段的垂直平分线交半径点.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)四边形的四个顶点都在曲线上,且对角线 过原点,若,求证:四边形的面积为定值,并求出此定值.

【答案】(1);(2)详见解析.

【解析】试题分析:(1)依据题设建立方程求解;(2)依据题设建立直线方程与椭圆方程联立,再运用坐标之间的关系进行分析推证和探求:

试题解析:

(1)因为在线段的中垂线上,所以.

所以

所以轨迹是以 为焦点的椭圆,且 ,所以

故轨迹的方程.

(2)证明:不妨设点位于轴的上方,则直线的斜率存在,设的方程为 .

联立,得

.①

.②

由①、②,得.③

设原点到直线的距离为

由③、④,得,故四边形的面积为定值,且定值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax﹣(m﹣2)ax (a>0且a≠1)是定义域为R的奇函数.
(1)求m的值;
(2)若f(1)<0,试判断y=f(x)的单调性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范围;
(3)若f(1)= ,g(x)=a2x+a2x﹣2f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔的高度单位:米),如图所示,垂直放置的标杆的高度米,已知 .

1)该班同学测得一组数据: 请据此算出的值;

2该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离单位:米),使的差较大,可以提高测量精确度,若观光塔高度为136米,问为多大时, 的值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试.已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为,且甲、乙两人是否答对每个试题互不影响.

(Ⅰ)求甲通过自主招生初试的概率;

(Ⅱ)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;

(Ⅲ)记甲答对试题的个数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若,求曲线处的切线方程;

(Ⅱ)若对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为,两天是否下雨互不影响,若两天都下雨的概率为

(1)求及基地的预期收益;

(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为万元,有雨时收益为万元,且额外聘请工人的成本为元,问该基地是否应该额外聘请工人,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数,
(1)求实数a的值;
(2)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围;
(3)设关于x的方程f(4x﹣b)+f(﹣2x+1)=0有实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C ,点P,过右焦点F作与y轴不垂直的直线l交椭圆CAB两点.

(Ⅰ )求椭圆C的离心率;

(Ⅱ )求证:以坐标原点O为圆心与PA相切的圆,必与直线PB相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),焦点到准线的距离为,过点作直线交抛物线于点(点在第一象限).

()若点焦点重合,且弦长,求直线的方程;

()若点关于轴的对称点为,直线x轴于点,且,求证:点B的坐标是,并求点到直线的距离的取值范围.

查看答案和解析>>

同步练习册答案