分析 (1)利用|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,设x2=-x1,|f(x1)+f(-x1)|≥|g(x1)+g(-x1)|恒成立,根据f(x)是奇函数,即可得出结论;
(2)利用函数单调性的定义,即可得出结论.
解答 解:(1)∵|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,
∴x2=-x1,|f(x1)+f(-x1)|≥|g(x1)+g(-x1)|恒成立,
∵f(x)是奇函数,
∴|f(x1)-f(x1)|≥|g(x1)+g(-x1)|恒成立,
∴g(x1)+g(-x1)=0,
∴g(-x1)=-g(x1),
∴g(x)是奇函数;
(2)设x1<x2,
∵f(x)是R上的增函数,
∴f(x1)<f(x2),
∵|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,
∴f(x1)-f(x2)<g(x1)-g(x2)<f(x2)-f(x1),
∴h(x1)-h(x2)=f(x1)-f(x2)+g(x1)-g(x2)<f(x1)-f(x2)+f(x2)-f(x1),
∴h(x1)-h(x2)<0,
∴函数h(x)=f(x)+g(x)在R上是增函数.
点评 本题考查函数的单调性、奇偶性,考查学生分析解决问题的能力,正确运用函数的单调性、奇偶性的定义是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\frac{1}{10}$,1) | B. | (0,1)∪(1,+∞) | C. | ($\frac{1}{10}$,10) | D. | $(0,\frac{1}{10})∪(10,+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 10分钟 | B. | 13分钟 | C. | 15分钟 | D. | 20分钟 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{8}{9}$,1) | B. | [$\frac{8}{9}$,+∞) | C. | [2,+∞) | D. | [$\frac{8}{9}$,1)∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com