精英家教网 > 高中数学 > 题目详情

【题目】已知则关于的方程给出下列五个命题①存在实数使得该方程没有实根

②存在实数使得该方程恰有个实根

③存在实数使得该方程恰有个不同实根

④存在实数使得该方程恰有个不同实根

⑤存在实数使得该方程恰有个不同实根

其中正确的命题的个数是(  )

A. B. C. D.

【答案】B

【解析】

分析由解析式判断出的正负,再写出的解析式,根据指数函数的图象画出此函数的图象,根据方程根的几何意义和图象,判断出方程根的个数,便可判断出命题的真假.

详解函数

单调递减,且

单调递增,且

画出函数的图象,如图所示:

结合函数函数的图象可得

当实数时,关于的方程没有实根,①正确;

当实数时,关于的方程恰有1个实根,②正确;

当实数时,关于的方程恰有2个不同的实根,③正确;

不存在实数t,使得关于的方程有3个或4个不同的实根,故④⑤错误,

综上所述:正确的命题是①②③,共3个.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx是定义域为R的奇函数,其中m是常数.

(Ⅰ)判断fx)的单调性,并用定义证明;

(Ⅱ)若对任意x[31],有ftx+f2t1≤0恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到焦点的距离,倾斜角为的直线经过焦点,且与抛物线交于两点.

1)求抛物线的标准方程及准线方程;

2)若为锐角,作线段的中垂线轴于点.证明:为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学届的震动。在1859年的时候,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想。在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论。若根据欧拉得出的结论,估计1000以内的素数的个数为_________(素数即质数,,计算结果取整数)

A. 768 B. 144 C. 767 D. 145

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnxax)有两个极值点,则实数a的取值范围是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为线段的中点是线段上一动点

(1)时,求证:

(2)的面积最小时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,线段上有两个动点,且,则下列结论中错误的是(

A.B.平面ABCD

C.三棱锥的体积为定值D.的面积与的面积相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

对定义在区间上的函数,若存在闭区间和常数,使得对任意的都有,且对任意的都有恒成立,则称函数为区间上的“U函数。

1)求证:函数上的“U函数;

2)设是(1)中的“U函数,若不等式对一切的恒成立,求实数的取值范围;

3)若函数是区间上的“U函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数

(Ⅰ)求值;

(Ⅱ)判断并证明该函数在定义域上的单调性;

(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;

(Ⅳ)设关于的函数有零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案