精英家教网 > 高中数学 > 题目详情
如图.在四棱锥P一ABCD中,底面ABCD是正方形,侧棱PD⊥底    面ABCD,PD=DC=2,E是PC的中点.
(1)证明:PA∥平面EDB;
(2)证明:平面PAC⊥平面PDB;
(3)求三梭锥D一ECB的体积.
分析:(1)利用三角形的中位线和线面平行的判定定理即可证明;
(2)利用面面垂直的判定定理即可证明;
(3)取CD的中点F,连接EF,利用三角形的中位线定理可得EF⊥底面ABCD,由V三棱锥D-ECB=V三棱锥E-BCD即可求出体积.
解答:解:(1)证明:设AC∩BD=O,连接EO.
∵底面ABCD是正方形,∴点O是AC的中点,
在△PAC中,EO是中位线,∴EO∥PA.
∵PA?平面EDB,EO?平面EDB,
∴PA∥平面EDB.
(2)证明:∵底面ABCD是正方形,∴AC⊥BD,
∵PD⊥底面ABCD,∴PD⊥AC.
∵PD∩BD=D,∴AC⊥平面PBD,
∵AC?平面PAC,
∴平面PAC⊥平面PDB.
(3)取CD的中点F,连接EF,
则EF∥PD,EF=
1
2
PD
=1,
∵PD⊥底面ABCD,
∴EF⊥底面ABCD.
∴V三棱锥D-ECB=V三棱锥E-BCD=
1
3
×
1
2
×22×1
=
2
3
点评:熟练掌握线面、面面的平行与垂直的判定定理和性质定理、三角形的中位线定理及等积变形是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=1,AD=2,PA⊥底面ABCD,PD与底面成45°角,点E是PD的中点.
(Ⅰ)求证:BE⊥PD;
(Ⅱ)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,AB=1,PA•AC=1,∠ABC=θ(0°<θ≤90°).
(1)若θ=90°,求二面角A-PC-B的大小;
(2)试求四棱锥P-ABCD的体积V的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°
(Ⅰ)求证:BD⊥PC;
(Ⅱ)若PA=AB,求二面角A-PD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,N是PB中点,过A、N、D三点的平面交PC于M.
(Ⅰ)求证:PD∥平面ANC;
(Ⅱ)求证:M是PC中点;
(Ⅲ)若PD⊥底面ABCD,PA=AB,BC⊥BD,证明:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县一模)(理科)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PA⊥底面ABCD,PA=4,M为PA的中点,N为BC的中点.
(1)求点B到平面PCD的距离;
(2)求二面角M-ND-A的大小.

查看答案和解析>>

同步练习册答案