【题目】已知圆的一条直径是椭圆的长轴,过椭圆上一点的动直线与圆相交于点,弦的最小值为.
(1)求圆及椭圆的方程;
(2) 已知点是椭圆上的任意一点,点是轴上的一定点,直线的方程为,若点到定直线的距离与到定点的距离之比为,求定点的坐标.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合.若曲线的参数方程为(为参数),直线的极坐标方程为.
(1)将曲线的参数方程化为极坐标方程;
(2)由直线上一点向曲线引切线,求切线长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC—A1B1C1中,侧面AA1B1B是正方形,AC丄侧面AA1B1B,AC=AB,点E是B1C1的中点.
(Ⅰ)求证:C1A∥平面EBA1;
(Ⅱ)若EF丄BC1,垂足为F,求二面角B—AF—A1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),以平面直角坐标系的原点为极点,正半轴为极轴,取相同的长度单位建立极坐标系,曲线C的极坐标方程为.
(Ⅰ)求直线l和曲线C的直角坐标方程,并指明曲线C的形状;
(Ⅱ)设直线l与曲线C交于A,B两点,O为坐标原点,且|OA|<|OB|,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,内角、、所对的边分别是、、,不等式对一切实数恒成立.
(1)求的取值范围;
(2)当取最大值,且的周长为时,求面积的最大值,并指出面积取最大值时的形状.(参考知识:已知、,;、,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图 1,在直角梯形中, ,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 为的中点,如图 2.
(1)求证: 平面;
(2)求证: 平面;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数是定义在上的不恒为零的函数,对于任意实数满足: ,, 考查下列结论:① ;②为奇函数;③数列为等差数列;④数列为等比数列.
以上结论正确的是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com