精英家教网 > 高中数学 > 题目详情
18.在△ABC中,a=3$\sqrt{3}$,c=2,B=150°,求边b的长及S△ABC

分析 由已知利用余弦定理可求b的值,进而利用三角形面积公式即可计算得解.

解答 (本小题满分为8分)
解:在△ABC中,∵a=3$\sqrt{3}$,c=2,B=150°,
∴b2=a2+c2-2accosB=(3$\sqrt{3}$)2+22-2•3$\sqrt{3}$•2•(-$\frac{\sqrt{3}}{2}$)=49.
∴解得:b=7,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×3$\sqrt{3}$×2×$\frac{1}{2}$=$\frac{3\sqrt{3}}{2}$.

点评 本题主要考查了余弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某单位为绿化环境,移栽了甲、乙、丙三棵大树.设甲、乙、丙三种大树移栽的成活率分别为0.4和0.5和0.8,且各株大树是否成活互不影响.求移栽的3棵大树中:
(1)恰有一棵大树成活的概率;
(2)恰有两棵大树成活的概率.
(3)至少有一颗大树成活的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:方程x2+mx+1=0有两个不相等的实根;命题q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,而p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆心为(1,2)且过原点的圆的方程是(  )
A.(x-1)2+(y-2)2=2B.(x+1)2+(y+2)2=2C.(x-1)2+(y-2)2=5D.(x+1)2+(y+2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求点M到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知公差d≠0的等差数列{an}满足a1=2,且a1,a2,a5成等比数列
(Ⅰ)求数列{an}的通项公式
(Ⅱ)记Sn为数列{an}的前n项和,求使得Sn>60n+800成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点A(2,0),离心率为$\frac{\sqrt{2}}{2}$,直线y=x-1与椭圆C交于不同的两点M、N.
(1)求椭圆C的方程;
(2)求△AMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线2x+y-5=0与x-2y=0交于点P,直线l:3x-y-7=0.求:
(1)过点P与直线l平行的直线方程;
(2)过点P与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,AB=2,$\frac{3}{2}$cos2B+5cosB-$\frac{1}{2}$=0,且点D在线段BC上.
(1)若∠ADC=$\frac{3π}{4}$,求AD的长;
(2)若BD=2DC,$\frac{sin∠BAD}{sin∠CAD}$=4$\sqrt{2}$,求△ABD的面积.

查看答案和解析>>

同步练习册答案