精英家教网 > 高中数学 > 题目详情

【题目】等比数列{an}的前n项和为Sn , 已知S1 , S3 , S2成等差数列,
(1)求{an}的公比q;
(2)求a1﹣a3=3,求Sn

【答案】
(1)解:依题意有a1+(a1+a1q)=2(a1+a1q+a1q2

由于a1≠0,故2q2+q=0

又q≠0,从而


(2)解:由已知可得

故a1=4

从而


【解析】(1)由题意知a1+(a1+a1q)=2(a1+a1q+a1q2),由此可知2q2+q=0,从而 .(2)由已知可得 ,故a1=4,从而
【考点精析】根据题目的已知条件,利用等比数列的前n项和公式和等差数列的性质的相关知识可以得到问题的答案,需要掌握前项和公式:;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线的方程为.

(1)若直线是曲线的切线,求证: 对任意成立;

(2)若对任意恒成立,求实数是应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形,侧棱底面,且侧棱的长是,点分别是的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下几个结论中:①在△ABC中,有等式 ②在边长为1的正△ABC中一定有 =
③若向量 =(﹣3,2), =(0,﹣1),则向量 在向量 方向上的投影是﹣2
④与向量 =(﹣3,4)同方向的单位向量是 =(﹣
⑤若a=40,b=20,B=25°,则满足条件的△ABC仅有一个;
其中正确结论的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的极值点,求实数的值;

(2)若上为增函数,求实数的取值范围;

(2)若使方程有实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是双曲线的左右焦点,以为直径的圆与双曲线的一条渐近线交于点,与双曲线交于点,且均在第一象限,当直线时,双曲线的离心率为,若函数,则()

A. 1 B. C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是梯形, ,侧面底面.

(1)求证:平面平面

(2)若与底面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC的内角A,B,C的对边分别为a,b,c,且 a=2csinA.
(1)确定角C的大小;
(2)若c= ,且ab=6,求边a,b.

查看答案和解析>>

同步练习册答案