【题目】已知离心率为 的椭圆C: + =1(a>b>0)过点P(﹣1, ).
(1)求椭圆C的方程;
(2)直线AB:y=k(x+1)交椭圆C于A、B两点,交直线l:x=m于点M,设直线PA、PB、PM的斜率依次为k1、k2、k3 , 问是否存在实数t,使得k1+k2=tk3?若存在,求出实数t的值以及直线l的方程;若不存在,请说明理由.
【答案】
(1)解:由椭圆的离心率e= = ,则a= c,
b2=a2﹣c2=c2,将P代椭圆方程: ,则 ,解得:c=1,
则a= ,b=1,
∴椭圆的方程:
(2)解:由题意可知:k显然存在且不为0,设A(x1,y1),B(x2,y2),y1=k(x1+1),y2=k(x2+1),
则 ,整理得:(1+2k2)x2+4k2x+2k2﹣2=0,
x1+x2=﹣ ,x1x2= ,
当x=m时,y=k(m+1),
则k1= ,k2= ,则k3= ,
则k1+k2= + = = =2k+ ,
由k1+k2=tk3,2k+ =t× =tk﹣ ,则当t=2,m=﹣2
∴当直线l:x=﹣2,存在实数t=2,使得k1+k2=tk3成立
【解析】(1)由椭圆的离心率公式,将P代椭圆方程,即可求得a和b的值,即可求得椭圆方程;(2)将直线l代入椭圆方程,利用韦达定理及直线的斜率公式,求得k1+k2及k3,假设存在实数t,使得k1+k2=tk3,代入即可求得t和m的值.
科目:高中数学 来源: 题型:
【题目】已知椭圆C1的方程为 + =1,双曲线C2的左、右焦点分别是C1的左、右顶点,而以双曲线C2的左、右顶点分别是椭圆C1的左、右焦点.
(1)求双曲线C2的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C2相交于不同的两点E、F,若△OEF的面积为2 ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了回馈顾客,某商场在元旦期间举行购物抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 ,中奖可以获得3分;方案乙的中奖率为 ,中奖可以获得2分;未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,抽奖结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≥3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,分别求两种方案下小明、小红累计得分的分布列,并指出为了累计得分较大,两种方案下他们选择何种方案较好,并给出理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车的使用年数x与所支出的维修费用y的统计数据如表:
使用年数x(单位:年) | 1 | 2 | 3 | 4 | 5 |
维修总费用y(单位:万元) | 0.5 | 1.2 | 2.2 | 3.3 | 4.5 |
根据上表可得y关于x的线性回归方程 = x﹣0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用( )
A.8年
B.9年
C.10年
D.11年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直二面角A﹣BD﹣C中,△ABD、△CBD均是以BD为斜边的等腰直角三角形,取AD中点E,将△ABE沿BE翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是( )
A.BC与平面A1BE内某直线平行
B.CD∥平面A1BE
C.BC与平面A1BE内某直线垂直
D.BC⊥A1B
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程为 +y2=1,圆C:(x﹣1)2+y2=r2 .
(Ⅰ)求椭圆上动点P与圆心C距离的最小值;
(Ⅱ)如图,直线l与椭圆相交于A、B两点,且与圆C相切于点M,若满足M为线段AB中点的直线l有4条,求半径r的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据微信同程旅游的调查统计显示,参与网上购票的1000位购票者的年龄(单位:岁)情况如图所示.
(1)已知中间三个年龄段的网上购票人数成等差数列,求a,b的值;
(2)为鼓励大家网上购票,该平台常采用购票就发放酒店入住代金券的方法进行促销,具体做法如下:年龄在[30,50)岁的每人发放20元,其余年龄段的每人发放50元,先按发放代金券的金额采用分层抽样的方式从参与调查的1000位网上购票者中抽取5人,并在这5人中随机抽取3人进行回访调查,求此3人获得代金券的金额总和为90元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该阳马的外接球的体积为( )
A.100πcm3
B.
C.400πcm3
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com