精英家教网 > 高中数学 > 题目详情
10.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,则$\overrightarrow{a}$•$\overrightarrow{c}$=(  )
A.2$\sqrt{3}$B.-6C.6D.-2$\sqrt{3}$

分析 $\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{a}$•(-$\overrightarrow{a}$-$\overrightarrow{b}$)=-${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$.

解答 解:∵$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,∴$\overrightarrow{c}$=-$\overrightarrow{a}$-$\overrightarrow{b}$,∴$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{a}$•(-$\overrightarrow{a}$-$\overrightarrow{b}$)=-${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$=-4-2=-6.
故选:B.

点评 本题考查了平面向量的数量级运算,用$\overrightarrow{a},\overrightarrow{b}$表示出$\overrightarrow{c}$是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若A、B、C、D是平面内任意四点,则下列四个式子中正确的个数有(  )
①$\overrightarrow{AC}$$+\overrightarrow{BD}$=$\overrightarrow{BC}$$+\overrightarrow{AD}$;②$\overrightarrow{AC}$$-\overrightarrow{BD}$=$\overrightarrow{DC}$$+\overrightarrow{AB}$;③$\overrightarrow{AB}$$-\overrightarrow{AC}$$-\overrightarrow{DB}$=$\overrightarrow{DC}$;④$\overrightarrow{AB}$$+\overrightarrow{BC}$$-\overrightarrow{AD}$=$\overrightarrow{DC}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,0<α<$\frac{π}{4}$,求sinα和cos(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,若cosA=$\frac{5}{13}$,则sin2A=$\frac{120}{169}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=sin(2x-$\frac{π}{3}$)-sin2x的单调递增区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在Rt△ABC中,$\overrightarrow{AC}$=(3,2),$\overrightarrow{BC}$=(k,1),则k=$\frac{\sqrt{13}-3}{3}$或$\frac{-3-\sqrt{13}}{3}$或-$\frac{3}{2}$或$\frac{11}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的通项公式为${a}_{n}=(-1)^{n}×(2n-1)$,求其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.log327-3${\;}^{lo{g}_{3}2}$+$\sqrt{(-2)^{2}}$+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$+sin(-$\frac{π}{6}$)=$\frac{25}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知sin2θ=$\frac{3}{5}$,且0<2θ<$\frac{π}{2}$,则$\frac{2co{s}^{2}\frac{θ}{2}-sinθ-1}{\sqrt{2}sin(θ+\frac{π}{4})}$的值为(  )
A.1B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

同步练习册答案