精英家教网 > 高中数学 > 题目详情

【题目】如图,已知曲线,曲线P是平面上一点,若存在过点P的直线与都有公共点,则称P“C1—C2型点

(1)在正确证明的左焦点是“C1—C2型点时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);

(2)设直线有公共点,求证,进而证明原点不是“C1—C2型点

(3)求证:圆内的点都不是“C1—C2型点

【答案】见解析

【解析】

1C1的左焦点为,过F的直线C1交于,与C2交于,故C1的左焦点为“C1-C2型点,且直线可以为

2)直线C2有交点,则

,若方程组有解,则必须

直线C2有交点,则

,若方程组有解,则必须

故直线至多与曲线C1C2中的一条有交点,即原点不是“C1-C2型点

3)显然过圆内一点的直线若与曲线C1有交点,则斜率必存在;

根据对称性,不妨设直线斜率存在且与曲线C2交于点,则

直线与圆内部有交点,故

化简得,

若直线与曲线C1有交点,则

化简得,

①②得,

但此时,因为,即式不成立;

时,式也不成立

综上,直线若与圆内有交点,则不可能同时与曲线C1C2有交点,

即圆内的点都不是“C1-C2型点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,圆与长轴是短轴两倍的椭圆:相切于点

(1)求椭圆与圆的方程;

(2)过点引两条互相垂直的两直线与两曲线分别交于点与点(均不重合).为椭圆上任一点,记点到两直线的距离分别为,求的最大值,并求出此时的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠c},则(其中a+c≠0)的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

1)设,判断上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;

2)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且

)求证:数列是等差数列;

)求数列的通项公式;

)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于AB两点.

1)求抛物线的焦点F的坐标及准线的方程;

2)若a为锐角,作线段AB的垂直平分线mx轴于点P,证明|FP|-|FP|cos2a为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)当时,求曲线在点处的切线方程;

2)若函数存在最小值,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上两个不同的点关于直线对称.

1)若已知为椭圆上动点,证明:

2)求实数的取值范围;

3)求面积的最大值(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在x轴上,一个顶点为,离心率为,过椭圆的右焦点F的直线l与坐标轴不垂直,且交椭圆于AB两点.

求椭圆的方程;

设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得CBN三点共线?若存在,求出定点的坐标;若不存在,说明理由;

,是线段为坐标原点上的一个动点,且,求m的取值范围.

查看答案和解析>>

同步练习册答案