【题目】已知函数.
(Ⅰ)求证:当时,的图象位于直线上方;
(Ⅱ)设函数,若曲线在点处的切线与轴平行,且在点处的切线与直线平行(为坐标原点),求证:.
科目:高中数学 来源: 题型:
【题目】针对某新型病毒,某科研机构已研发出甲乙两种疫苗,为比较两种疫苗的效果,选取100名志愿者,将他们随机分成两组,每组50人.第一组志愿者注射甲种疫苗,第二组志愿者注射乙种疫苗,经过一段时间后,对这100名志愿者进行该新型病毒抗体检测,发现有的志愿者未产生该新型病毒抗体,在未产生该新型病毒抗体的志愿者中,注射甲种疫苗的志愿者占.
产生抗体 | 未产生抗体 | 合计 | |
甲 | |||
乙 | |||
合计 |
(1)根据题中数据,完成列联表;
(2)根据(1)中的列联表,判断能否有的把握认为甲乙两种疫苗的效果有差异.
参考公式:,其中.
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在年的自主招生考试成绩中随机抽取名学生的笔试成绩,按成绩共分五组,得到如下的频率分布表:
组号 | 分组 | 频数 | 频率 |
第一组 | |||
第二组 | |||
第三组 | |||
第四组 | |||
第五组 |
(1)请写出频率分布表中、、的值,若同组中的每个数据用该组区间的中间值代替,请估计全体考生的平均成绩;
(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第、、组中用分层抽样的方法抽取名考生进入第二轮面试,求第、、组中每组各抽取多少名考生进入第二轮的面试;
(3)在(2)的前提下,学校要求每个学生需从、两个问题中任选一题作为面试题目,求第三组和第五组中恰好有个学生选到问题的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对一个量用两种方法分别算一次,由结果相同而构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.
(1)根据恒等式两边的系数相同直接写出一个恒等式,其中;
(2)设,利用上述恒等式证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为米峡谷拐入宽为米的峡谷.如图所示,位于峡谷悬崖壁上两点、的连线恰好经过拐角内侧顶点(点、、在同一水平面内),设与较宽侧峡谷悬崖壁所成角为,则的长为________(用表示)米.要使输气管顺利通过拐角,其长度不能低于________米.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1,F2为椭圆C:的左、右焦点,椭圆C过点M,且MF2⊥F1F2.
(1)求椭圆C的方程;
(2)经过点P(2,0)的直线交椭圆C于A,B两点,若存在点Q(m,0),使得|QA|=|QB|.
①求实数m的取值范围:
②若线段F1A的垂直平分线过点Q,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车.并对该电动汽车的电池使用情况进行了测试,其中剩余电量y与行驶时问 (单位:小时)的测试数据如下表:
(1)根据电池放电的特点,剩余电量y与行驶时间之间满足经验关系式:,通过散点图可以发现y与之间具有相关性.设,利用表格中的前8组数据求相关系数r,并判断是否有99%的把握认为与之间具有线性相关关系;(当相关系数r满足时,则认为有99%的把握认为两个变量具有线性相关关系)
(2)利用与的相关性及表格中前8组数据求出与之间的回归方程;(结果保留两位小数)
(3)如果剩余电量不足0.8,电池就需要充电.从表格中的10组数据中随机选出8组,设X表示需要充电的数据组数,求X的分布列及数学期望.
附:相关数据:.
表格中前8组数据的一些相关量:,,
相关公式:对于样本,其回归直线的斜率和戗距的最小二乘估计公式分别为:,
相关系数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com