【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2= ,且直线l经过曲线C的左焦点F. ( I )求直线l的普通方程;
(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.
【答案】解:(I)曲线C的极坐标方程为ρ2= ,即ρ2+ρ2sin2θ=4,
可得直角坐标方程:x2+2y2=4,化为: + =1.
∴c= = ,可得作焦点F .
直线l的参数方程为 (t为参数),消去参数t可得:x﹣y=m,
把 代入可得:m=﹣ .
∴直线l的普通方程为:x﹣y+ =0.
(II)设椭圆C的内接矩形在第一象限的顶点为 .
∴椭圆C的内接矩形的周长为L=8cosθ+4 sinθ=4 sin(θ+φ)≤4 (其中tanφ= ).
∴椭圆C的内接矩形的周长的最大值为4 .
【解析】(I)曲线C的极坐标方程为ρ2= ,即ρ2+ρ2sin2θ=4,利用互化公式可得直角坐标方程,可得作焦点F .直线l的参数方程为 (t为参数),消去参数t可得:x﹣y=m,把F代入可得:m.(II)设椭圆C的内接矩形在第一象限的顶点为 .可得椭圆C的内接矩形的周长为L=8cosθ+4 sinθ=4 sin(θ+φ)(其中tanφ= ).即可得出椭圆C的内接矩形的周长的最大值.
科目:高中数学 来源: 题型:
【题目】(选修4﹣1:几何证明选讲)
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC= ,延长CE交AB于点F,求△BCF外接圆的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图茎叶图记录了甲,乙两班各六名同学一周的课外阅读时间(单位:小时),已知甲班数据的平均数为13,乙班数据的中位数为17,那么x的位置应填;y的位置应填 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn , 若S9=81,a3+a5=14.
(1)求数列{an}的通项公式;
(2)设bn= ,若{bn}的前n项和为Tn , 证明:Tn< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)试比较f(﹣1)与f(a)的大小;
(Ⅱ)当a≥﹣1时,若函数f(x)的图象和x轴围成一个三角形,则实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(ax+b)+ex﹣1(a≠0).
(1)当a=﹣1,b=1时,判断函数f(x)的零点个数;
(2)若f(x)≤ex﹣1+x+1,求ab的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com