精英家教网 > 高中数学 > 题目详情
给出下列三个命题:
①k=±1是直线y=k(x+1)与抛物线y2=4x只有一个交点的充要条件
②函数f(x)=lnx-(
12
)
x
在x∈(1,e)上有且只有一个零点
③直线ax+y+2a=0与圆x2+2x+y2-3=0恒有两个不同交点.
其中不正确的命题序号是
 
分析:由直线与抛物线的关系,我们求出直线y=k(x+1)与抛物线y2=4x只有一个交点时,参数k的取值,结合充要条件的定义,我们可以判断①的真假;由函数零点个数的判断方法,我们可以判断②的真假;根据直线与圆的位置关系判断方法,我们可以判断出③的真假,进而得到答案.
解答:解:∵k=0时,直线y=k(x+1)与抛物线y2=4x也只有一个交点,故k=±1是直线y=k(x+1)与抛物线y2=4x只有一个交点的充分不必要条件,故①错误;
函数f(x)=lnx-(
1
2
)
x
在区间(1,e)上单调递增,且f(0)•f(e)<0,故函数f(x)=lnx-(
1
2
)
x
在x∈(1,e)上有且只有一个零点正确;
直线ax+y+2a=0恒过(-2,0)点,而(-2,0)点在圆x2+2x+y2-3=0内,故直线ax+y+2a=0与圆x2+2x+y2-3=0恒有两个不同交点正确;
故答案为①
点评:本题考查的知识点是命题的真假判断,函数的零点,直线与圆的位置关系,直线与圆锥曲线的位置关系,其中根据上述基本知识点判断出题目中三个命题的真假是解答本题的关键,①中易忽略直线与抛物线的对称轴平行的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于函数f(x)=sinx(cosx-sinx)+
1
2
,给出下列三个命题:
(1)函数f(x)在区间[
π
2
8
]
上是减函数;
(2)直线x=
π
8
是函数f(x)的图象的一条对称轴;
(3)函数f(x)的图象可以由函数y=
2
2
sin2x
的图象向左平移
π
4
而得到.
其中正确的命题序号是
 
.(将你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列三个命题:
①函数y=
1
2
ln
1-cosx
1+cosx
y=lntan
x
2
是同一函数;
②若函数y=f(x)与y=g(x)的图象关于直线y=x对称,则函数y=f(2x)与y=
1
2
g(x)
的图象也关于直线y=x对称;
③若奇函数f(x)对定义域内任意x都有f(x)=f(2-x),则f(x)为周期函数.
其中真命题是(  )
A、①②B、①③C、②③D、②

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知直线m,n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β其中正确命题的序号是
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列三个命题:
①函数y=ax(a>0且a≠1)与函数y=logax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=lg(x+
x2+1
)
都是奇函数.
其中正确命题的序号是
①③
①③
(把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2000•上海)设有不同的直线a、b和不同的平面α、β、γ,给出下列三个命题:
(1)若a∥α,b∥α,则a∥b.
(2)若a∥α,a∥β,则α∥β.
(3)若a∥γ,β∥γ,则a∥β.
其中正确的个数是(  )

查看答案和解析>>

同步练习册答案