精英家教网 > 高中数学 > 题目详情
设函数f(x)在点x0处可导,试求下列各极限的值。
(1)
(2)
解:(1)原式=

=-f′(x0
(△x→0时,-△x→0)
(2)原式=


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0.
(Ⅰ)若a=2,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0.
(Ⅰ)若a=2,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年辽宁省沈阳二中高二(下)4月月考数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0.
(Ⅰ)若a=2,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年天津市十二区县重点中学高三联考数学试卷1(理科)(解析版) 题型:解答题

设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0.
(Ⅰ)若a=2,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年天津市十二区县重点中学高三联考数学试卷1(文科)(解析版) 题型:解答题

设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0.
(Ⅰ)若a=2,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案