精英家教网 > 高中数学 > 题目详情

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

【答案】
(1)解:当a=5时,f(x)=log2 +5),

由f(x)>0;得log2 +5)>0,

+5>1,则 >﹣4,则 +4= >0,即x>0或x<﹣

即不等式的解集为{x|x>0或x<﹣ }.


(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2 +a)﹣log2[(a﹣4)x+2a﹣5]=0.

即log2 +a)=log2[(a﹣4)x+2a﹣5],

+a=(a﹣4)x+2a﹣5>0,①

则(a﹣4)x2+(a﹣5)x﹣1=0,

即(x+1)[(a﹣4)x﹣1]=0,②,

当a=4时,方程②的解为x=﹣1,代入①,成立

当a=3时,方程②的解为x=﹣1,代入①,成立

当a≠4且a≠3时,方程②的解为x=﹣1或x=

若x=﹣1是方程①的解,则 +a=a﹣1>0,即a>1,

若x= 是方程①的解,则 +a=2a﹣4>0,即a>2,

则要使方程①有且仅有一个解,则1<a≤2.

综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4.


(3)函数f(x)在区间[t,t+1]上单调递减,

由题意得f(t)﹣f(t+1)≤1,

即log2 +a)﹣log2 +a)≤1,

+a≤2( +a),即a≥ =

设1﹣t=r,则0≤r≤

= =

当r=0时, =0,

当0<r≤ 时, =

∵y=r+ 在(0, )上递减,

∴r+ =

= =

∴实数a的取值范围是a≥


【解析】1、当a=5时,由f(x)>0可得 , ,所以得到 ,即不等式可得。
2、由对数的运算性质可得,整理可得到(a﹣4)x2+(a﹣5)x﹣1=0,对a的取值进行讨论
当a=4时,方程②的解为x=﹣1,当a=3时,方程②的解为x=﹣1,当a≠4且a≠3时,方程②的解为 ,再检验,若x=﹣1是方程①的解,则 ,即a>1,若 是方程①的解,则 ,即a>2,那个上所述,要使方程①有且仅有一个解,则1<a≤2。把以上几种情况并起来既得结果:a的取值范围是1<a≤2,或a=3或a=4.
3、由函数单调性的定义可得 f(t)﹣f(t+1)≤1,根据对数的运算性质可得到 计算出a的解析式。再由整体代换思想和基本不等式求出其取值范围。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆 过点 ,离心率为 ,左、右焦点分别为F1 , F2 , 过F1的直线交椭圆于A,B两点. (Ⅰ)求椭圆C的方程;
(Ⅱ)当△F2AB的面积为 时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否做到“光盘”行动,得到如下列联表及附表: 经计算:

做不到“光盘”行动

做到“光盘”行动

45

10

30

15

P(X2≥x0

0.10

0.05

0.025

x0

2.706

3.841

5.024

参照附表,得到的正确结论是(
A.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别无关”
C.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别有关”
D.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程|x2﹣2x﹣1|﹣t=0有四个不同的实数根x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则2(x4﹣x1)+(x3﹣x2)的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)其中ω>0,|φ|<
(1)若cos cosφ﹣sin sinφ=0.求φ的值;
(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于 ,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象象左平移m个单位所对应的函数是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学期末考试的语文、数学、英语、物理成绩如茎叶图所示,其中甲的一个数据记录模糊,无法辨认,用a来表示,已知两位同学期末考试四科的总分恰好相同,则甲同学四科成绩的中位数为( )

A.92
B.92.5
C.93
D.93.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的n位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如右图所示.
(1)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;
(2)若按分层抽样的方法从年龄在[20,30)以内及[40,50)以内的市民中随机抽取10人,再从这10人中随机抽取3人进行调研,记随机抽的3人中,年龄在[40,50)以内的人数为X,求X的分布列以及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知正方体ABCDA1B1C1D1的棱长为a , 过点B1B1EBD1于点E , 求AE两点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案