精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

已知曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为为参数).

(1)求曲线的直角坐标方程和直线的普通方程;

(2)求直线被曲线所截得的弦长.

【答案】(1)曲线的直角坐标方程为.直线的普通方程为.(2)

【解析】

1)根据极坐标方程与直角坐标方程的互化,可直接得出圆的直角坐标方程;根据直线的参数方程消去参数,可直接得出直线的普通方程;

2)用点到直线距离公式求出圆心到直线的距离,根据几何法求出弦长即可.

(1)因为曲线的极坐标方程可化为.

所以曲线的直角坐标方程为.

直线为参数)的普通方程为.

(2)圆心到直线的距离为

又因为半径为1,所以弦长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是增函数,求实数的取值范围;

(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为1的正方形,平面ABCD平面ABCD,且G为线段EC上的动点,则下列结论中正确的是______

该几何体外接球的表面积为

GEC中点,则平面AEF

的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连续投掷2粒大小相同,质地均匀的骰子3次,则恰有2次点数之和不小于10的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市正在创建全国文明城市,某高中为了解学生的创文知晓率,按分层抽样的方法从“表演社”、“演讲社”、“围棋社”三个活动小组中随机抽取了6人进行问卷调查,各活动小组人数统计如下图:

(1)从参加问卷调查的6名学生中随机抽取2名,求这2名学生来自同一小组的概率;

(2)从参加问卷调查的6名学生中随机抽取3名,用表示抽得“表演社”小组的学生人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试求出所有的正整数组使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆内接等腰梯形中,已知,对角线交于点,且图中各条线段长均为正整数,,圆的半径

(1)求证:图中存在一个三角形,其三边长均为质数且组成等差数列;

(2)若给图中的线(包括圆、梯形、梯形的对角线)作点染色,使染上红色,其他点染上红蓝色之一,求证:图中存在三个同色点,两两距离相等且长度为质数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了增加某种产品的生产能力,决定改造原有生产线,需一次性投资300万元,第一年的年生产能力为300吨,随后以每年40吨的速度逐年递减,根据市场调查与预测,该产品的年销售量的频率分布直方图如图所示,该设备的使用年限为3年,该产品的销售利润为1万元吨.

1根据年销售量的频率分布直方图,估算年销量的平均数同一组中的数据用该组区间的中点值作代表

2将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.

根据频率分布直方图估计年销售利润不低于180万的概率和不低于220万的概率;

试预测该企业3年的总净利润年的总净利润年销售利润一投资费用

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案