精英家教网 > 高中数学 > 题目详情
10.已知函数$f(x)={log_a}(1-\frac{2}{x+1})$(a>0,a≠1)
(1)写出函数f(x)的值域、单调区间(不必证明)
(2)是否存在实数a使得f(x)的定义域为[m,n],值域为[1+logan,1+logam]?若存在,求出实数a的取值范围;若不存在说明理由.

分析 (1)由真数可以取到不等于1的所有正实数得函数的值域,分析出真数的单调性,由复合函数的单调性得到原函数的单调期间;
(2)假设存在实数a,使得f(x)的定义域为[m,n],值域为[1+logan,1+logam],可得0<a<1,问题转化为m,n是f(x)=1+logax的两根,进一步整理得到ax2+(a-1)x+1=0在(1,+∞)上有两不同解,然后利用三个二次结合得到关于a的不等式组,求解不等式组得答案.

解答 解:(1)∵$1-\frac{2}{x+1}$≠1,∴$lo{g}_{a}(1-\frac{2}{x+1})≠0$,
则$f(x)={log_a}(1-\frac{2}{x+1})$的值域为:(-∞,0)∪(0,+∞);
由$1-\frac{2}{x+1}>0$,解得x<-1或x>1,且1-$\frac{2}{x+1}$在(-∞,0)、(0,+∞)上为增函数,
∴当a>1时,f(x)的增区间:(-∞,-1),(1,+∞);
当0<a<1时,f(x)的减区间:(-∞,-1),(1,+∞);
(2)假设存在实数a,使得f(x)的定义域为[m,n],值域为[1+logan,1+logam],
由m<n,及1+logan<1+logam,得0<a<1,
∴f(m)=1+logam,f(n)=1+logan,
∴m,n是f(x)=1+logax的两根,
∴${log_a}(1-\frac{2}{X+1})=1+{log_a}x$,化简得ax2+(a-1)x+1=0在(1,+∞)上有两不同解,
设G(x)=ax2+(a-1)x+1,则$\left\{{\begin{array}{l}{G(1)>0}\\{-\frac{a-1}{2a}>1}\\{△>0}\end{array}}\right.$,解得$0<a<3-2\sqrt{2}$.
∴存在实数a∈(0,3-$2\sqrt{2}$),使得f(x)的定义域为[m,n],值域为[1+logan,1+logam].

点评 本题考查函数的定义域、值域及其求法,考查了复合函数的单调性,体现了分类讨论的数学思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在矩形ABCD中,已知$AB=\sqrt{3},AD=2$,点E是BC的中点,点F在CD上,若$\overrightarrow{AB}•\overrightarrow{AF}$=$\sqrt{3}$,则$\overrightarrow{AE}•\overrightarrow{BF}$的值是$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,$C=\frac{π}{3}$,则cos2A+cos2B的最大值和最小值分别是(  )
A.$1-\frac{{\sqrt{3}}}{2},\frac{3}{2}$B.$\frac{1}{2}$,$\frac{5}{4}$C.$1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{3}}}{2}$D.$1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|x≤2},a=$\sqrt{3}$,则下列结论中正确的是(  )
A.a⊆AB.{a}⊆AC.a∉AD.{a}∈A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知${log_a}\frac{1}{2}<1$,则a∈$(0,\frac{1}{2})∪(1,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在四面体ABCD中,E、F分别是棱AD、BC的中点,则向量$\overrightarrow{EF}$与$\overrightarrow{AB}$、$\overrightarrow{CD}$的关系是(  )
A.$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{CD}$B.$\overrightarrow{EF}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{CD}$C.$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{CD}$D.$\overrightarrow{EF}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{CD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{x^2}{m}+{y^2}$=1的一个焦点为$({\frac{1}{4},0})$,则m的值是(  )
A.$\frac{1}{2}$B.$\frac{17}{16}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是数列{log2an}的前n项和.
(1)求数列{an}的通项公式;
(2)求满足$(1-\frac{1}{T_2})(1-\frac{1}{T_3})…(1-\frac{1}{T_n})≥\frac{1009}{2016}$的最大正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=2log2(2x+t)
(1)t=1时,解不等式f(x)≤2log2(x+1)
(2)t=4时,令g(x)=f(x)-2log2(x+1),求g(x)在x∈[0,1]上最大值与最小值.
(3)当x∈[0,1]时,f(x)≥log2(x+1)恒成立,求t取值范围?

查看答案和解析>>

同步练习册答案