精英家教网 > 高中数学 > 题目详情

如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.

(1)证明:B,D,H,E四点共圆;
(2)证明:CE平分∠DEF.

证明见解析

解析证明:(1)在△ABC中,∵∠B=60°,
∴∠BAC+∠BCA=120°.
∵AD,CE是角平分线,
∴∠HAC+∠HCA=60°,∴∠AHC=120°.
∴∠EHD=∠AHC=120°.
∵∠EBD+∠EHD=180°,
∴B,D,H,E四点共圆.
(2)如图所示,连结BH,
则BH为∠ABC的平分线,

得∠HBD=30°.
由(1)知B,D,H,E四点共圆,
∴∠CED=∠HBD=30°.
又∠AEH=∠EBD=60°,AE=AF,AH平分∠EAF,
∴EF⊥AD.可得∠CEF=30°.
∴CE平分∠DEF.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,为圆的直径,为垂直的一条弦,垂足为,弦.
(1)求证:四点共圆;
(2)若,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。

求:(1)⊙O的半径;(2)s1n∠BAP的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,为圆的切线,为切点,的角平分线与和圆分别交于点.

(1)求证(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.

(1)证明:C,B,D,E四点共圆;
(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆O的半径OC垂直于直径AB,弦CD交半径 OAE,过D的切线与BA的延长线交于M.
 
(1)求证:MDME
(2)设圆O的半径为1,MD,求MACE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.

(1)求∠ADF的度数;
(2)AB=AC,求AC∶BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知AB是⊙O的直径,C为圆上任意一点,过C的切线分别与过A、B两点的切线交于P、Q.

求证:AB2=4AP·BQ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆O的直径AB=4,C为圆周上一点,BC=2,过C作圆O的切线l,过Al的垂线ADAD分别与直线l、圆O交于点DE,求线段AE的长.

查看答案和解析>>

同步练习册答案