精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求的普通方程和的直角坐标方程;

(Ⅱ)若交于两点,求的值.

【答案】(Ⅰ)的普通方程为的直角坐标方程;(Ⅱ).

【解析】

(Ⅰ)消去参数即可求得的普通方程,利用极坐标和直角坐标的互化公式,即可求得的直角坐标方程;

(Ⅱ)理解参数的几何意义并利用其几何意义,联立直线和曲线方程,利用韦达定理进行运算求解即可.

1)由为参数),消去参数,得

的普通方程为.

,得

代入,得

的直角坐标方程.

2)由为参数),可得),

的几何意义是抛物线上的点(原点除外)与原点连线的斜率.

由题意知,当时,

只有一个交点不符合题意,故.

为参数)代入

,设此方程的两根分别为

由韦达定理可得,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点在椭圆内部,点在椭圆上,则以下说法正确的是(

A.的最小值为

B.椭圆的短轴长可能为2

C.椭圆的离心率的取值范围为

D.,则椭圆的长轴长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为

1)求曲线的直角坐标方程与直线l的参数方程;

2)设直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某志愿者服务网站在线招募志愿者,当报名人数超过计划招募人数时,将采用随机抽取的方法招募志愿者,如表记录了ABCD四个项目最终的招募情况,其中有两个数据模糊,记为ab.

甲同学报名参加了这四个志愿者服务项目,记ξ为甲同学最终被招募的项目个数,已知Pξ=0Pξ=4.

(Ⅰ)求甲同学至多获得三个项目招募的概率;

(Ⅱ)求ab的值;

(Ⅲ)假设有十名报了项目A的志愿者(不包含甲)调整到项目D,试判断Eξ如何变化(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线C1a0b0)右焦点F2作双曲线一条渐近线的垂线,垂足为P,与双曲线交于点A,若 ,则双曲线C的渐近线方程为(

A.y=±xB.y=±xC.y=±2xD.y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在上任意一点处的切线,若过右焦点的直线交椭圆:两点,在点处切线相交于

1)求点的轨迹方程;

2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆两点,证明:为定值.

查看答案和解析>>

同步练习册答案