【题目】已知抛物线:.
(1)若直线经过抛物线的焦点,求抛物线的准线方程;
(2)若斜率为-1的直线经过抛物线的焦点,且与抛物线交于,两点,当时,求抛物线的方程.
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程为ρ= ,直线l的参数方程为(t为参数,0≤α<π).
(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(2)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:.
(1)若直线经过抛物线的焦点,求抛物线的准线方程;
(2)若斜率为-1的直线经过抛物线的焦点,且与抛物线交于,两点,当时,求抛物线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
用反证法证明命题“设a,b,c为实数,且,,则,,”时,要给出的假设是:a,b,c都不是正数;
若函数在处取得极大值,则或;
用数学归纳法证明,在验证成立时,不等式的左边是;
数列的前n项和,则是数列为等比数列的充要条件;
上述命题中,所有正确命题的序号为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即.已知满足 .且,则用以上给出的公式可求得的面积为____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】即将于年夏季毕业的某大学生准备到贵州非私营单位求职,为了了解工资待遇情况,他在贵州省统计局的官网上,查询到年到年非私营单位在岗职工的年平均工资近似值(单位:万元),如下表:
年份 | ||||||||||
序号 | ||||||||||
年平均工资 |
(1)请根据上表的数据,利用线性回归模型拟合思想,求关于的线性回归方程(,的计算结果根据四舍五入精确到小数点后第二位);
(2)如果毕业生对年平均工资的期望值为8.5万元,请利用(1)的结论,预测年的非私营单位在岗职工的年平均工资(单位:万元。计算结果根据四舍五入精确到小数点后第二位),并判断年平均工资能否达到他的期望.
参考数据:,,
附:对于一组具有线性相关的数据:,,,,
其回归直线的斜率和截距的最小二乘法估计分别为
,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com