分析 由已知得sin2α+sin2β+sin2γ=$\frac{{A}_{1}{B}^{2}}{{A}_{1}{C}^{2}}$+$\frac{{A}_{1}{D}^{2}}{{A}_{1}{C}^{2}}$+$\frac{{A}_{1}{{C}_{1}}^{2}}{{A}_{1}{C}^{2}}$,由此能求出结果.
解答 解:长方体ABCD-A1B1C1D1中,对角线A1C与棱CB、CD、CC1所成角分别为α、β、γ,
∴sin2α+sin2β+sin2γ=$\frac{{A}_{1}{B}^{2}}{{A}_{1}{C}^{2}}$+$\frac{{A}_{1}{D}^{2}}{{A}_{1}{C}^{2}}$+$\frac{{A}_{1}{{C}_{1}}^{2}}{{A}_{1}{C}^{2}}$
=$\frac{A{{A}_{1}}^{2}+A{B}^{2}}{{A}_{1}{C}^{2}}$+$\frac{A{{A}_{1}}^{2}+A{D}^{2}}{{A}_{1}{C}^{2}}$+$\frac{{A}_{1}{{B}_{1}}^{2}+{B}_{1}{{C}_{1}}^{2}}{{A}_{1}{C}^{2}}$
=$\frac{2(A{{A}_{1}}^{2}+A{B}^{2}+A{D}^{2})}{{A}_{1}{C}^{2}}$
=$\frac{2{{A}_{1}C}^{2}}{{A}_{1}{C}^{2}}$
=2.
故答案为:2.
点评 本题考查线面角的平方的和的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{7}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com