【题目】已知函数f(x)= (a<0).
(1)当a=-1时,求函数f(x)的极值;
(2)若函数F(x)=f(x)+1没有零点,求实数a的取值范围.
【答案】(1)极小值为f(2)=-,无极大值.(2) (-e2,0).
【解析】试题分析:(1)将参数值代入得到表达式,根据极值的定义得到函数f(x)的极小值为f(2)=-;(2)研究函数的F(x)=f(x)+1单调性,画出函数的大概变化趋势,使得函数和x轴没有交点即可。
解析:
(1)当a=-1时,f(x)=,f′(x)=.
由f′(x)=0,得x=2.
当x变化时,f′(x),f(x)的变化情况如下表:
x | (-∞,2) | 2 | (2,+∞) |
f′(x) | - | 0 | + |
f(x) | ? | 极小值 | ? |
所以,函数f(x)的极小值为f(2)=-,函数f(x)无极大值.
(2)F′(x)=f′(x)==.
当a<0时,F′(x),F(x)随x的变化情况如下表:
x | (-∞,2) | 2 | (2,+∞) |
F′(x) | - | 0 | + |
F(x) | ? | 极小值 | ? |
若使函数F(x)没有零点,当且仅当F(2)=+1>0,
解得a>-e2,所以此时-e2<a<0.
故实数a的取值范围为(-e2,0).
科目:高中数学 来源: 题型:
【题目】如图在棱锥中, 为矩形, 面, , 与面成角, 与面成角.
(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;
(2)当为中点时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB为圆O的直径,点E、F在圆O上,AB ∥EF,矩形ABCD所在平面与圆O所在的平面互相垂直.已知AB=2,EF=1.
(1)求证:平面DAF⊥平面CBF;
(2)求直线AB与平面CBF所成角的大小;
(3)求AD的长为何值时,平面DFC与平面FCB所成的锐二面角的大小为60°?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若函数y=h(x)的单调减区间是,求实数a的值;
(2)若f(x)≥g(x)对于定义域内的任意x恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左,右焦点分别为,且与短轴的一个端点Q构成一个等腰直角三角形,点P()在椭圆上,过点作互相垂直且与x轴不重合的两直线AB,CD分别交椭圆于A,B,C,D且M,N分别是弦AB,CD的中点
(1)求椭圆的方程
(2)求证:直线MN过定点R()
(3)求面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1,BC的中点.
(1)证明:平面AEB⊥平面BB1C1C;
(2)证明:C1F∥平面ABE;
(3)设P是BE的中点,求三棱锥P B1C1F的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的焦点是椭圆的顶点, 为椭圆的左焦点且椭圆经过点.
(1)求椭圆的方程;
(2)过椭圆的右顶点作斜率为的直线交椭圆于另一点,连结并延长交椭圆于点,当的面积取得最大值时,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com