精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=Asin(ωx+φ)+B,(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的图象上的一个最高点为M($\frac{π}{12}$,3),最低点为N($\frac{7π}{12}$,-1),且与x轴的一个交点为P($\frac{5π}{12}$,0).
(1)求f(x)的解析式;
(2)求f(x)的单调增区间;
(3)求f(x),x∈(0,$\frac{π}{6}$)的值域.

分析 (1)根据已知,求出A,B,ω,φ的值,可得f(x)的解析式;
(2)由2x+$\frac{π}{3}$∈[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ],k∈Z,可得f(x)的单调增区间;
(3)求出x∈(0,$\frac{π}{6}$)时,相位角的范围,结合正弦函数的图象和性质,可得函数的值域.

解答 解:(1)∵函数f(x)=Asin(ωx+φ)+B,(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的图象上的一个最高点为M($\frac{π}{12}$,3),最低点为N($\frac{7π}{12}$,-1),且与x轴的一个交点为P($\frac{5π}{12}$,0).
∴2A=3-(-1)=4,故A=2;
2B=3+(-1)=2,故B=1;
$\frac{T}{2}$=$\frac{7π}{12}$-$\frac{π}{12}$=$\frac{π}{2}$,故T=π,ω=2,
故f(x)=2sin(2x+φ)+1,
又∵函数f(x)的图象与x轴的一个交点为P($\frac{5π}{12}$,0).
故2sin($\frac{5π}{6}$+φ)=-1,即sin($\frac{5π}{6}$+φ)=-$\frac{1}{2}$,
又∵0<φ<$\frac{π}{2}$,
故$\frac{5π}{6}$+φ=$\frac{7π}{6}$,即φ=$\frac{π}{3}$,
故f(x)=2sin(2x+$\frac{π}{3}$)+1;
(2)由2x+$\frac{π}{3}$∈[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ],k∈Z得:
x∈[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ],k∈Z,
故f(x)的单调增区间为[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ],k∈Z,
(3)当x∈(0,$\frac{π}{6}$)时,2x+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{2π}{3}$),
由2x+$\frac{π}{3}$=$\frac{π}{3}$,或2x+$\frac{π}{3}$=$\frac{2π}{3}$时,f(x)=$\sqrt{3}$+1,
当2x+$\frac{π}{3}$=$\frac{π}{2}$时,f(x)=3,
故x∈(0,$\frac{π}{6}$)函数的值域为($\sqrt{3}$+1,3]

点评 本题考查的知识点是正弦函数的图象和性质,熟练掌握正弦函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x),当x∈(0,1]时满足如下性质:f(x)=2lnx且$f(x)=2f(\frac{1}{x})$,若在区间$[\frac{1}{3},3]$内,函数g(x)=f(x)-ax,有三个不同的零点,则实数a的取值范围是(  )
A.$[\frac{ln3}{3},\frac{1}{e})$B.$[\frac{4ln3}{3},\frac{4}{e})$C.$(0,\frac{1}{e})$D.$(0,\frac{4}{e})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}的前n项和为Sn,当${S_n}={n^2}+2n$时,a4+a5=(  )
A.11B.20C.33D.35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列四个命题.
①命题p:对任意x∈R,sinx≤1的否定¬p:存在x∈R,sinx>1;
②“k=1”是“函数y=cos2kx-sin2kx的最小正周期为π”的充要条件;
③若$\overrightarrow{a}$与$\overrightarrow{b}$+$\overrightarrow{c}$都是非零向量,则“$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$”是“$\overrightarrow{a}$∥($\overrightarrow{b}$+$\overrightarrow{c}$)”的必要不充分条件;
④命题“若一个整数能被6整除,则它能被3整除”的否命题是假命题.其中真命题的序号是①.(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F2(2,0)与x轴垂直的直线交椭圆于点M,且|MF2|=3.
(1)求椭圆的标准方程;
(2)已知点P(0,1),问是否存在直线1与椭圆交于不同的两点A,B,且AB的垂直平分线恰好过P点?若存在,求出直线l斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下面四个结论:
①y=sin|x|的图象关于原点对称;
②y=sin(|x|+2)的图象是把y=sin|x|的图象向左平移2个单位而得到的;
③y=sin(x+2)的图象是把y=sinx的图象向左平移2个单位而得到的;
④y=sin(x+2)的图象是由y=sin(x+2)(x≥0)的图象及y=-sin(x-2)(x<0)的图象组成的.
其中,正确的结论有③(请把正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.用导数的定义求函数y=$\sqrt{x}$的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)和圆O:x2+y2=b2.过双曲线C上一点P引圆O的两条切线,切点分别为A,B.若△PAB可为正三角形,则双曲线C的离心率e的取值范围是[$\frac{\sqrt{5}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.抛物线y=x2-x-6与x轴的交点坐标为(-2,0),(3,0).

查看答案和解析>>

同步练习册答案