【题目】已知函数.
(1)判断的奇偶性与单调性;
(2)解关于的不等式.
【答案】(1)奇函数,增函数;(2).
【解析】
(1)运用奇偶性的定义和单调性的定义,即可判断;
(2)运用(1)的结论,f(x2﹣2x+2)+f(﹣5)<0即为f(x2﹣2x+2)<﹣f(﹣5)=f(5),得x2﹣2x+2<5,解出即可.
(1)∵f(﹣x)f(x),∴f(x)是奇函数.
∵f(x)1,在R上任取x1,x2,且x1<x2,
f(x1)﹣f(x2),
∵x1<x2,∴,,
即有f(x1)<f(x2),则f(x)在R上是增函数.
(2)由(1)得f(x)是奇函数,
且f(x)在R上是增函数.
则f(x2﹣2x+2)+f(﹣5)<0即为f(x2﹣2x+2)<﹣f(﹣5)=f(5),
得x2﹣2x+2<5,即有x2﹣2x﹣3<0,
解得﹣1<x<3,则不等式解集为(﹣1,3).
科目:高中数学 来源: 题型:
【题目】已知函数(且),定义域均为.
(1)若当时,的最小值与的最小值的和为,求实数的值;
(2)设函数,定义域为.
①若,求实数的值;
②设函数,定义域为.若对于任意的,总能找到一个实数,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,点,曲线(为参数),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线:.
(Ⅰ)若,求与公共点的直角坐标;
(Ⅱ)若与相交于不同的两点,是线段的中点,当时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象,向右平移个单位长度,再把纵坐标伸长到原来的2倍,得到函数,则下列说法正确的是( )
A. 函数的最小正周期为 B. 函数在区间上单调递增
C. 函数在区间上的最小值为 D. 是函数的一条对称轴
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的有( )
(1)很小的实数可以构成集合;
(2)集合与集合是同一个集合;
(3) 这些数组成的集合有5个元素;
(4)任何集合至少有两个子集.
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某项体能测试中,规定每名运动员必需参加且最多两次,一旦第一次测试通过则不再参加第二次测试,否则将参加第二次测试.已知甲每次通过的概率为,乙每次通过的概率为,且甲乙每次是否通过相互独立.
(Ⅰ)求甲乙至少有一人通过体能测试的概率;
(Ⅱ)记为甲乙两人参加体能测试的次数和,求的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com