【题目】设样本数据x1 , x2 , …,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1 , y2 , …,y10的均值和方差分别为( )
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a
【答案】A
【解析】解:方法1:∵yi=xi+a,
∴E(yi)=E(xi)+E(a)=1+a,
方差D(yi)=D(xi)+E(a)=4.
方法2:由题意知yi=xi+a,
则 = (x1+x2+…+x10+10×a)= (x1+x2+…+x10)= +a=1+a,
方差s2= [(x1+a﹣( +a)2+(x2+a﹣( +a)2+…+(x10+a﹣( +a)2]= [(x1﹣ )2+(x2﹣ )2+…+(x10﹣ )2]=s2=4.
所以答案是:A.
【考点精析】通过灵活运用平均数、中位数、众数和极差、方差与标准差,掌握⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据;标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差即可以解答此题.
科目:高中数学 来源: 题型:
【题目】在下列结论中: ①函数y=sin(kπ﹣x)(k∈Z)为奇函数;
②函数 的图象关于点 对称;
③函数 的图象的一条对称轴为 π;
④若tan(π﹣x)=2,则cos2x= .
其中正确结论的序号为(把所有正确结论的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线Ω:x2=2py(p>0),过点(0,2p)的直线与抛物线Ω交于A、B两点,AB的中点为M,若点M到直线y=2x的最小距离为 ,则p=( )
A.
B.1
C.
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(1+x)﹣ax, .
(Ⅰ)当b=1时,求g(x)的最大值;
(Ⅱ)若对x∈[0,+∞),f(x)≤0恒成立,求a的取值范围;
(Ⅲ)证明 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn , 且 (a∈N+).
(1)求a的值及数列{an}的通项公式;
(2)设 ,求{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,椭圆C: 的离心率是 ,
抛物线E:x2=4y的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设与坐标轴不重合的动直线l与C交于不同的两点A和B,与x轴交于点M,且 满足kPA+kPB=2kPM , 试判断点M是否为定点?若是定点求出点M的坐标;若不是定点请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m>1,直线l:x﹣my﹣ =0,椭圆C: +y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2 , △BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com