精英家教网 > 高中数学 > 题目详情
5.一个几何体的三视图如图所示,则该几何体的体积为12.

分析 由三视图知几何体为三棱锥S-ABC,其中底面△ABC中,O是BC中点,AO=BO=CO=3,SO⊥底面ABC,SO=4,由此能求出该几何体的体积.

解答 解:如图所示,由三视图知几何体为三棱锥S-ABC,
其中底面△ABC中,O是BC中点,AO=BO=CO=3,
SO⊥底面ABC,SO=4,
∴该几何体的体积为:
V=$\frac{1}{3}×{S}_{△ABC}×SO$
=$\frac{1}{3}×\frac{1}{2}×BC×AO×SO$
=$\frac{1}{3}×\frac{1}{2}×6×3×4$
=12.
故答案为:12.

点评 本题考查几何体的体积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知△ABC的三边所在直线方程分别为AB:4x-3y+10=0,BC:y-2=0,CA:3x-4y-5=0.
(1)求∠A的正切值的大小;
(2)求△ABC的重心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设f(x)=aex+blnx,且f′(1)=e,f′(-1)=$\frac{1}{e}$,则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=-4+5cost}\\{y=-5+5sint}\end{array}\right.$(t为参数),以坐标项点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=-2sinθ.
(1)把C1的参数方程化为极坐标系方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知两点A(0,1),B(4,3),则线段AB的垂直平分线方程是(  )
A.x-2y+2=0B.2x+y-6=0C.x+2y-2=0D.2x-y+6=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AD=AC,AB=$\frac{1}{2}$DE,F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱锥S-ABC中,底面ABC为直角三角形,且∠ABC=90°,SA⊥底面ABC,且SA=AB,点M是SB的中点,AN⊥SC且交SC于点N.
(1)求证:SC⊥平面AMN;
(2)当AB=BC时,求二面角N-MA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.化简:$\frac{A_n^m}{{A_{n-1}^{m-1}}}$=n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=x2-2x-m在[0,1]上的最大值与最小值的和为-3,则函数y=-x2+mx在[0,1]上的最小值是0.

查看答案和解析>>

同步练习册答案