分析 由三视图知几何体为三棱锥S-ABC,其中底面△ABC中,O是BC中点,AO=BO=CO=3,SO⊥底面ABC,SO=4,由此能求出该几何体的体积.
解答 解:如图所示,由三视图知几何体为三棱锥S-ABC,
其中底面△ABC中,O是BC中点,AO=BO=CO=3,
SO⊥底面ABC,SO=4,
∴该几何体的体积为:
V=$\frac{1}{3}×{S}_{△ABC}×SO$
=$\frac{1}{3}×\frac{1}{2}×BC×AO×SO$
=$\frac{1}{3}×\frac{1}{2}×6×3×4$
=12.
故答案为:12.
点评 本题考查几何体的体积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x-2y+2=0 | B. | 2x+y-6=0 | C. | x+2y-2=0 | D. | 2x-y+6=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com