精英家教网 > 高中数学 > 题目详情
9.己知函数f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
①求f(x)的最小正周期和单调区间;
②用五点法作出其简图;
③求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上最大值和最小值.

分析 (1)利用和角公式展开,再利用二倍角公式与和角公式化简;
(2)列表,描点,作图;
(3)根据x的范围得出2x+$\frac{π}{6}$的范围,结合正弦函数性质得出f(x)的最值.

解答 解:①f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$).
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ.解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ.
令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,解得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ.
∴f(x)的单调增区间是[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],减区间是[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z.
②列表:

 2x+$\frac{π}{6}$ 0 $\frac{π}{2}$ π $\frac{3π}{2}$ 2π
 x-$\frac{π}{12}$ $\frac{π}{6}$ $\frac{5π}{12}$ $\frac{2π}{3}$ $\frac{11π}{12}$
 2sin(2x+$\frac{π}{6}$) 0 2 0-2 0
作出函数图象如图:

③∵x∈[-$\frac{π}{6}$,$\frac{π}{4}$],∴2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
∴当2x+$\frac{π}{6}$=-$\frac{π}{6}$时,f(x)取得最小值-1,当2x+$\frac{π}{6}$=$\frac{π}{2}$时,f(x)取得最大值2.

点评 本题考查了三角函数的恒等变换与化简求值,三角函数的性质,及五点法作图.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在正方体中,异面直线AA1与BD1所成的角为α,则有cosα=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线的渐近线方程是y=±$\frac{1}{2}$x,焦距为10,则它的方程是$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{5}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,F1,F2是其两个焦点,点M、N在双曲线上.
(1)若M、N的中点为(2,$\frac{9}{2}$),求直线MN的方程.
(2)若∠F1MF2=60°时.求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知三条直线l1:x+3y-3=0,l2:x-y+1=0,l3:2x+y+m=0交于同一点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点M在线段AB上,且$\frac{AM}{MB}$=$\frac{7}{3}$,则BM=$\frac{3}{10}$AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{5}{4}$,且双曲线C的焦点到它的一条渐近线的距离为3,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其中$\overrightarrow{a}$=(2cosx,1),$\overrightarrow{b}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及取得最大值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.中心为原点,一个焦点为$F(0,5\sqrt{2})$的椭圆截直线y=3x-2所得的弦的中点的横坐标为$\frac{1}{2}$,则椭圆的方程为(  )
A.$\frac{x^2}{25}+\frac{y^2}{75}=1$B.$\frac{x^2}{75}+\frac{y^2}{25}=1$C.$\frac{{2{x^2}}}{75}+\frac{{2{y^2}}}{25}=1$D.$\frac{{2{x^2}}}{25}+\frac{{2{y^2}}}{75}=1$

查看答案和解析>>

同步练习册答案