精英家教网 > 高中数学 > 题目详情
定义函数f(x)=
sinx,sinx≥cosx
cosx,sinx<cosx
,给出下列四个命题:
(1)该函数的值域为[-1,1];
(2)当且仅当x=2kπ+
π
2
(k∈Z)时,该函数取得最大值;
(3)该函数是以π为最小正周期的周期函数;
(4)当且仅当2kπ+π<x<2kπ+
2
(k∈Z)时,f(x)<0.上述命题中正确的个数是
1个
1个
分析:f(x)为分段函数,由已知分别解出自变量的范围,从而求得f(x)的值域为[-
2
2
,1],f(x)取得最大值1时,得x=
π
2
+2kπ或x=2kπ(k∈Z),求解f(x)的最小正周期周期,利用定义f(x+T)=f(x)来判断,计算出π不是f(x)的最小正周期,经过验证第四个命题是对的.
解答:解:∵sinx≥cosx,∴
π
4
+2kπ≤x≤
4
+2kπ
∵sinx<cosx,∴-
4
+2kπ<x<
π
4
+2kπ
∴f(x)=
sinx   [
π
4
+2kπ
4
+2kπ]
cosx  (-
4
+2kπ
π
4
+2kπ) 
,∴f(x)的值域为[-
2
2
,1]
当x=
π
2
+2kπ或x=2kπ(k∈Z)时,f(x)取得最大值为1.
∵f(x+π)=
-sinx
-cosx
≠f(x)
∴f(x)不是以π为最小正周期的周期函数,
当f(x)<0时,2kπ+π<x<2kπ+
2
(k∈Z)
综上所述,正确的个数是1个,
故答案为1个.
点评:本题主要考查求解三角函数的值域、周期、最值等知识,是三角函数的基础知识,应熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知 
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定义函数f(x)=
m
n
-
1
2

(1)求函数f(x)的最小正周期,值域,单调增区间.
(2)设△ABC的三内角A,B,C所对的边分别为a、b、c,且c=
3
,f(C)=0,若向量
d
=(1,sinA)与 
e
=(2,sinB)共线,求边a,b的值及△ABC的面积S?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=3x2-3x直线l1:x=2和l2:y=3tx,其中t为常数且0<<1.直线l2与函数f(x)的图象以及直线l1、l2与函数f(x)的图象围成的封闭图形如图中阴影所示,设这两个阴影区域的面积之和为S(t).
(1)求函数S(t)的解析式;
(2)若函数L(t)=S(t)+6t-2,判断L(t)是否存在极值,若存在,求出极值,若不存在,说明理由;
(3)定义函数h(x)=S(x),x∈R若过点A(1,m)(m≠4)可作曲线y=h(x)(x∈R)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=3x2-3x直线l1:x=2和l2:y=3tx,其中t为常数且0<<1.直线l2与函数f(x)的图象以及直线l1、l2与函数f(x)的图象围成的封闭图形如图中阴影所示,设这两个阴影区域的面积之和为S(t).
(1)求函数S(t)的解析式;
(2)若函数L(t)=S(t)+6t-2,判断L(t)是否存在极值,若存在,求出极值,若不存在,说明理由;
(3)定义函数h(x)=S(x),x∈R若过点A(1,m)(m≠4)可作曲线y=h(x)(x∈R)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知 
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定义函数f(x)=
m
n
-
1
2

(1)求函数f(x)的最小正周期,值域,单调增区间.
(2)设△ABC的三内角A,B,C所对的边分别为a、b、c,且c=
3
,f(C)=0,若向量
d
=(1,sinA)与 
e
=(2,sinB)共线,求边a,b的值及△ABC的面积S?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省宜春市上高二中高二(上)第三次月考数学试卷(文科)(解析版) 题型:解答题

已知 sinx,cosx),=(cosx,-cosx),x∈R,定义函数f(x)=
(1)求函数f(x)的最小正周期,值域,单调增区间.
(2)设△ABC的三内角A,B,C所对的边分别为a、b、c,且c=,f(C)=0,若向量=(1,sinA)与 =(2,sinB)共线,求边a,b的值及△ABC的面积S?

查看答案和解析>>

同步练习册答案