【题目】.
(1)若,求函数的单调区间;
(2)若,求证:.
【答案】(1)详见解析(2)详见解析
【解析】
试题分析:(1)先求函数导数,再根据定义域研究导函数零点:当时,仅有一个零点;当时,有两个零点;列表分析导函数符号变号规律得单调区间(2)根据(1)得,将不等式转化为证明,构造函数。利用导数可得
试题解析:(1),,
则,
当时,在上单调增,上单调减,
当时,令,解得,,
当,解得,
∴,的解集为,;的解集为,
∴函数的单调递增区间为:,,
函数的单调递减区间为;
当,解得,
∴,的解集为;的解集为,
综上可知:,函数的单调递增区间为:,,函数的单调递减区间为;,函数的单调递增区间为,函数的单调递减区间为.
(2)证明:∵,故由(1)可知函数的单调递增区间为,单调递减区间为,
∴在时取极大值,并且也是最大值,即 ,
又∵,
∴,
设,,
∴的单调增区间为,单调减区间为,
∴,
∵,∴,∴,,
∴.
科目:高中数学 来源: 题型:
【题目】小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为(25-x)万元(国家规定大货车的报废年限为10年).
(1)大货车运输到第几年年底,该车运输累计收入超过总支出?
(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某隧道设计为双向四车道,车道总宽为,要求通行车辆限高,隧道全长为,隧道的拱线可近似的看成半个椭圆形状.
(1)若最大拱高为,则隧道设计的拱宽是多少?
(2)若最大拱高不小于,则应如何设计拱高和拱宽,才能使隧道的土方工程量最小?
(注: 1.半个椭圆的面积公式为;2.隧道的土方工程量=截面面积隧道长)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中,.台体体积公式:,其中分别为台体上、下底面面积,为台体高.
(Ⅰ)证明:直线 平面;
(Ⅱ)若,,,三棱锥的体积,求该组合体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过点,,且它的圆心在直线上.
(Ⅰ)求圆的方程;
(Ⅱ)求圆关于直线对称的圆的方程。
(Ⅲ)若点为圆上任意一点,且点,求线段的中点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,直线.设圆的半径为1,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com