分析 (Ⅰ)求出f(x)的表达式,得到ω的值,从而求出函数的递增区间即可;
(Ⅱ)根据正弦定理求出B的值,从而求出C的正弦值,求出三角形的面积即可.
解答 解:(I)f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$
=sin(2ωx+$\frac{π}{3}$),
∵f(x)的最小正周期为π,且ω>0.
∴$\frac{2π}{2ω}$=π∴ω=1,
∴f(x)=sin(2x+$\frac{π}{3}$),
由-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z
得f(x)的增区间为[-$\frac{5}{12}$π+kπ,$\frac{π}{12}$+kπ],(k∈Z);
(II)∵若f(A)=$\frac{\sqrt{3}}{2}$,∵0<A<π,
∴$\frac{π}{3}$<2A+$\frac{π}{3}$<$\frac{7π}{3}$,∴A=$\frac{π}{6}$,
∵$\frac{a}{sinA}$=$\frac{b}{sinB}$,∴sinB=$\frac{\sqrt{2}}{2}$,
∵B∈(0,π),∴B=$\frac{π}{4}$或$\frac{3π}{4}$,
?当B=45°时,C=105°
∵sin105°=sin(60°+45°)=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
∴S△ABC=$\frac{1+\sqrt{3}}{4}$,
?当B=135°,C=15°,
sin15°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
∴S△ABC=$\frac{\sqrt{3}-1}{4}$.
点评 本题考查了三角函数的性质,考查正弦定理的应用以及三角形的面积公式,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,5] | B. | [-1,4] | C. | (2,6) | D. | (0,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a-c<b-c | B. | $\sqrt{a}$>$\sqrt{b}$ | C. | $\frac{a}{c}$>$\frac{b}{c}$ | D. | ac2>bc2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{\sqrt{5}}{3}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | -$\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com