【题目】设命题: ,函数有意义;命题: ,不等式恒成立,如果命题“或”为真命题,命题“且”为假命题,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】有人说:“掷一枚骰子一次得到的点数是2的概率是,这说明掷一枚骰子6次会出现一次点数是2.”对此说法,同学中出现了两种不同的看法:一些同学认为这种说法是正确的.他们的理由是:因为掷一枚骰子一次得到点数是2的概率是,所以掷一枚骰子6次得到一次点数是2的概率P=×6=1,即“掷一枚骰子6次会出现一次点数是2”是必然事件,一定发生.还有一些同学觉得这种说法是错误的,但是他们却讲不出是什么理由来.你认为这种说法对吗?请说出你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥,底面为菱形, 平面, , 分别是的中点.
(Ⅰ)证明: ;
(Ⅱ)若为上的动点, 与平面所成最大角的正切值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知经过原点的直线与椭圆交于两点,点为椭圆上不同于的一点,直线的斜率均存在,且直线的斜率之积为.
(1)求椭圆的离心率;
(2)若,设分别为椭圆的左、右焦点,斜率为的直线经过椭圆的右焦点,且与椭圆交于两点,若点在以为直径的圆内部,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上. (Ⅰ)求证:EF⊥平面PAC;
(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆恒过点,且与直线: 相切.
(1)求动圆圆心的轨迹的方程;
(2)探究在曲线上,是否存在异于原点的两点, ,当时,直线恒过定点?若存在,求出该定点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由于被墨水污染,一道数学题仅能见到如下文字:“已知二次函数的图像经过,,求证:这个二次函数的图像关于直线对称”,根据已知消息,题中二次函数图像不具有的性质是( ).
A. 在轴上的截线段长是 B. 与轴交于点
C. 顶点 D. 过点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若,则称为的“不动点”;若,则称为的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为和,即,.
()设函数,求集合和.
()求证:.
()设函数,且,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com