【题目】已知椭圆:,,为椭圆的左、右顶点,椭圆的右焦点为,椭圆的离心率为.
(1)设直线与椭圆交于,两点,且,求的值;
(2)设过点且斜率为1的直线与椭圆交于,(其中,分别在轴的上、下方)两点,当时,记、的面积分别为、,求的最小值,并求此时椭圆的标准方程.
【答案】(1)
(2)最小值为,此时椭圆的标准方程为
【解析】
(1)设在轴上方,根据,利用直角三角形中线定理得到,,再由直线的倾斜角为,得到,然后代入求解。
(2)设直线的方程为,与联立消去得,,利用三角形面积公式,,结合韦达定理,建立,再利用基本不等式求最小值.
(1)不妨设在轴上方.
因为直线与椭圆交于,两点,所以,
因为椭圆的右焦点为,且,所以,
设椭圆的半焦距为,则,代入得,,
因为,
所以,所以,
解得,;
(2)设直线的方程为(为椭圆的半焦距),
与联立消去得,,
设,的坐标分别为,,
所以,,
,
因为,所以,所以,
同理得,,
所以
,
当且仅当,即,,时,取等号,
所以取得最小值为,
此时椭圆的标准方程为.
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.在较严重病例中,感染可导致肺炎严重急性呼吸综合征肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验n次.
方式二:混合检验,将其中且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1.
假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).现取其中且k≥2)份血液样本,记采用逐份检验,方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.
(1)若,试求p关于k的函数关系式p=f(k).
(2)若p与干扰素计量相关,其中2)是不同的正实数,满足x1=1且.
(i)求证:数列为等比数列;
(ii)当时采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了让健身馆会员参与的健身促销活动.
(1)为了解会员对促销活动的兴趣程度,现从某周六参加该健身馆健身活动的会员中随机采访男性会员和女性会员各人,他们对于此次健身馆健身促销活动感兴趣的程度如下表所示:
感兴趣 | 无所谓 | 合计 | |
男性 | |||
女性 | |||
合计 |
根据以上数据能否有的把握认为“对健身促销活动感兴趣”与“性别”有关?
(参考公式,其中)
(2)在感兴趣的会员中随机抽取人对此次健身促销活动的满意度进行调查,以茎叶图记录了他们对此次健身促销活动满意度的分数(满分分),如图所示,若将此茎叶图中满意度分为“很满意”(分数不低于分)、“满意”(分数不低于平均分且低于分)、“基本满意”(分数低于平均分)三个级别.先从“满意”和“很满意”的会员中随机抽取两人参加回访馈赠活动,求这两人中至少有一人是“很满意”会员的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)①求证:当任意取值时,的图像始终经过一个定点,并求出该定点坐标;
②若的图像在该定点处取得极值,求的值;
(2)求证:当时,函数有唯一零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)若直线与曲线交于、两点,设,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,四边形,均为正方形,且,M为的中点,N为的中点.
(1)求证:平面ABC;
(2)求二面角的正弦值;
(3)设P是棱上一点,若直线PM与平面所成角的正弦值为,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中有一分鹿问题:“今有大夫、不更、簪袅、上造、公士,凡五人,共猎得五鹿.欲以爵次分之,问各得几何.”在这个问题中,大夫、不更、簪袅、上造、公士是古代五个不同爵次的官员,现皇帝将大夫、不更、簪枭、上造、公士这5人分成两组(一组2人,一组3人),派去两地执行公务,则大夫、不更恰好在同一组的概率为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com