精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,焦点分别为,点是椭圆上的点,面积的最大值是

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

【答案】(Ⅰ) (Ⅱ)见解析

【解析】

(Ⅰ)由题意得到的方程组,求出的值,即可得出椭圆方程;

(Ⅱ)当直线的斜率不存在时,易求出四边形的面积;当直线的斜率存在时,设直线方程是,联立直线与椭圆方程,结合判别式和韦达定理,可表示出弦长,再求出点到直线的距离,根据和点在曲线上,求出的关系式,

最后根据,即可得出结果.

解:(Ⅰ)由解得 得椭圆的方程为.

(Ⅱ)当直线的斜率不存在时,直线的方程为,此时四边形的面积为

当直线的斜率存在时,设直线方程是,联立椭圆方程

到直线的距离是

因为点在曲线上,所以有整理得

由题意四边形为平行四边形,所以四边形的面积为

, 故四边形的面积是定值,其定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为征求个人所得税法修改建议,某机构对当地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500))

(1)求居民月收入在的频率;

(2)根据频率分布直方图估算样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数为常数)的图象与x轴有唯一公共点M

1)求函数的单调区间.

2)若,存在不相等的实数,满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2xa|+|2x-1|(aR).

(1)a=-1时,求f(x)2的解集;

(2)f(x)|2x+1|的解集包含集合,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有5个大小相同的球,其中有2个白球,2个黑球,1个红球,现从袋中每次取出1球,去除后不放回,直到取到有两种不同颜色的球时即终止,用表示终止取球时所需的取球次数,则随机变量的数字期望是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两个居民小区的居委会欲组织本小区的中学生,利用双休日去市郊的敬老院参加献爱心活动.两个校区每位同学的往返车费及服务老人的人数如下表:

小区

小区

往返车费

3元

5元

服务老人的人数

5人

3人

根据安排,去敬老院的往返总车费不能超过37元,且小区参加献爱心活动的同学比小区的同学至少多1人,则接受服务的老人最多有____人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,是等比数列,.

(1)求的通项公式;

(2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点AB.

)求椭圆M的方程;

)若,求 的最大值;

)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.C,D和点 共线,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是圆x2+y24上的动点,P点在x轴上的射影是D,点M满足

(Ⅰ)求动点M的轨迹C的方程

(Ⅱ)设AB是轨迹C上的不同两点,点E(﹣40),且满足,若λ[1),求直线AB的斜率k的取值范围.

查看答案和解析>>

同步练习册答案