精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线 与椭圆交于两点,点(0,1),且=,求直线的方程.

【答案】(1) ;(2) .

【解析】试题分析:(Ⅰ)由椭圆上任意一点到椭圆两个焦点的距离之和为可得,由的焦距为,可得,再由的关系可得,进而得到椭圆方程;(II)直线代入椭圆方程,运用韦达定理和判别式大于,再由中点坐标公式和两直线垂直的条件,可得的方程,解方程可得,从而可得直线方程.

试题解析:(Ⅰ)由已知,解得,

所以

所以椭圆C的方程为

(Ⅱ)由

直线与椭圆有两个不同的交点,所以解得

设A(),B(

计算

所以,A,B中点坐标E(),

因为=,所以PE⊥AB,,

所以, 解得,

经检验,符合题意,所以直线的方程为.

【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程 ;③找关系:根据已知条件,建立关于的方程组;④得方程:解方程组,将解代入所设方程,即为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 为实数,且,

(I)求方程的解;

(II)若满足,求证:①

(III)在(2)的条件下,求证:由关系式所得到的关于的方程存在,使

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业团队拟生产两种产品,根据市场预测,产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2).(注: 利润与投资额的单位均为万元)

(注:利润与投资额的单位均为万元)

(1)分別将两种产品的利润表示为投资额的函数;

(2)该团队已筹集到10 万元资金,并打算全部投入两种产品的生产,问:当产品的投资额为多少万元时,生产两种产品能获得最大利润,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣

(1)若a>0,试判断f(x)在定义域内的单调性;

(2)若f(x)在[1,e]上的最小值为,求实数a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,如果存在实数m,n(m<n),使得f(x)的定义域和值域分别是[m,n]和[3m,3n],则m+n=_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F1、F2分别是双曲线 =1(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A、B两点,若△F2AB是等边三角形,则双曲线的离心率为 (

A.
B.2
C. ﹣1
D.1+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.

(1)求证:AA1⊥平面ABC;

(2)求二面角A1-BC1-B1的余弦值;

(3)求点C到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)解不等式

(2)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某海滨浴场海浪的高度y()是时间t(0≤t≤24,单位:时)的函数,记作:.下表是某日各时的浪高数据.

t()

0

3

6

9

12

15

18

21

24

y()

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

(1)根据以上数据,求函数yf(t)的函数表达式;

(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动?

查看答案和解析>>

同步练习册答案