精英家教网 > 高中数学 > 题目详情

在已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(,-2).
(1)求f(x)的解析式;
(2)当x∈[]时,求f(x)的值域.

(1);(2).

解析试题分析:(1)两交点之间的距离为半个周期,这样利用公式,先求出,利用最小值求,再将代入,,算得
(2)先求的范围,再根据的图像,计算的范围.
试题解析:(1)两交点之间距离为且图象上最低点M
A=2    W=,将点M代入
解得
(2)∵  即
值域为[-1,2]
考点:1.的函数解析式;2. 的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,的图象关于直线对称,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最大值,并写出取最大值时的取值集合;
(2)已知中,角的对边分别为求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数.

(1)求函数的图像的对称中心坐标;
(2)将函数图像向下平移个单位,再向左平移个单位得函数的图像,试写出的解析式并作出它在上的图像.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的定义域和最小正周期;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图像如图所示.

(1)求函数f(x)的解析式,并写出f(x)的单调减区间;
(2)的内角分别是A,B,C.若f(A)=1,,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,且
(1)将表示为的函数,并求的单调递增区间;
(2)已知分别为的三个内角对应的边长,若,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了得到函数y=2sin(x∈R)的图象,只需把函数y=2sinx(x∈R)的图象上所有的点经过怎样的变换得到?

查看答案和解析>>

同步练习册答案