已知函数,其中.
(1)若曲线在点处的切线方程为,求函数的解析式;
(2)讨论函数的单调性;
(3)若对于任意的,不等式在上恒成立,求的取值范围.
(1)函数的解析式为;(2)当时,在,内是增函数;当时在,内是增函数,在,内是减函数;(3).
解析试题分析:(1)先求出导函数,进而根据曲线在点处的切线方程为得到即,从中可求解出的值,进而可确定函数的解析式;(2)针对导函数,对分、两类,由导数大于零求出函数的单调增区间,由导数小于零可求出函数的单调递减区间;(3)要使对于任意的,不等式在上恒成立,只须,由(2)的讨论,确定函数,进而得到不等式即,该不等式组对任意的成立,从中可求得.
科目:高中数学
来源:
题型:解答题
记函数fn(x)=a·xn-1(a∈R,n∈N*)的导函数为f′n(x),已知f′3(2)=12.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
(1),由导数的几何意义得,于是
由切点在直线上可得,解得
所以函数的解析式为 3分
(2)因为
当时,显然,这时在,内是增函数
当时,令,解得
当变化时,,的变化情况如下表:
(1)求a的值;
(2)设函数gn(x)=fn(x)-n2ln x,试问:是否存在正整数n使得函数gn(x)有且只有一个零点?若存在,请求出所有n的值;若不存在,请说明理由;
(3)若实数x0和m(m>0且m≠1)满足=,试比较x0与m的大小,并加以证明.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号