精英家教网 > 高中数学 > 题目详情
13.已知f(x)=$\left\{\begin{array}{l}{e^x}+ax,x>0\\ \frac{1}{e^x}-ax,x<0\end{array}$,若函数f(x)有四个零点,则实数a的取值范围是(  )
A.$({-∞,-\frac{1}{e}})$B.(-∞,-e)C.(e,+∞)D.$({\frac{1}{e},+∞})$

分析 由题意可知:函数f(x)为偶函数,只需ex+ax=0有两个正根,即-$\frac{{e}^{x}}{x}$=a有两个正根,设g(x)=-$\frac{{e}^{x}}{x}$,求导g′(x)=-$\frac{{e}^{x}x-{e}^{x}}{{x}^{2}}$=-$\frac{{e}^{x}(x-1)}{{x}^{2}}$,利用函数的单调性求得g(x)的最大值,要使-$\frac{{e}^{x}}{x}$=a有两个正跟,即使g(x)与y=a有两个交点,则实数a的取值范围(-∞,-e).

解答 解:由函数f(x)为偶函数,可知使函数f(x)有四个零点,
只需要ex+ax=0有两个正根,
即-$\frac{{e}^{x}}{x}$=a有两个正根,
设g(x)=-$\frac{{e}^{x}}{x}$,求导g′(x)=-$\frac{{e}^{x}x-{e}^{x}}{{x}^{2}}$=-$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
令g′(x)>0,解得:0<x<1,g(x)在(0,1)单调递增,
令g′(x)<0,解得:x>1,g(x)在(1,+∞)单调递减,
∴g(x)在x=2时取最大值,最大值g(1)=-e,
要使-$\frac{{e}^{x}}{x}$=a有两个正跟,即使g(x)与y=a有两个交点,
∴实数a的取值范围(-∞,-e),
故选B.

点评 本题考查函数的奇偶性的应用,考查利用导数求函数的单调性及最值,考查导数的求导公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设i为虚数单位,若复数z=(2m-8)+(m-2)i是纯虚数,则实数m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.△ABC中,角A,B,C的对边分别为a,b,c,2bcosC-c=2a.
(Ⅰ)求B的大小;
(Ⅱ)若a=3,且AC边上的中线长为$\frac{{\sqrt{19}}}{2}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{1}{2}$sin2xtanx+2sinxtan$\frac{x}{2}$的值域为(  )
A.[0,4]B.[0,4)C.[0,3)∪(3,4]D.[0,3)∪(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知离心率e=$\frac{\sqrt{5}}{2}$的双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线C的一条渐近线相交于O、A两点,若△AOF的面积为1,则实数a的值为(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,三棱柱OAD-EBC,其中A,C,B,D,E均为以O为球心,半径为4的半球面上,EF为直径,侧面ABCD为边长等于4的正方形,则三棱柱OAD-EBC的高为(  )
A.$\frac{8\sqrt{6}}{3}$B.$\frac{4\sqrt{6}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了研究某学科成绩是否在学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分)

(Ⅰ)求男生和女生的平均成绩
(Ⅱ)请根据图示,将2×2列联表补充完整,并根据此列联表判断,能否在犯错误概率不超过10%的前提下认为“该学科成绩与性别有关”?
优分非优分合计
男生
女生
合计50
(Ⅲ)用分层抽样的方法从男生和女生中抽取5人进行学习问卷调查,并从5人中选取两名学生对该学科进行考后重测,求至少有一名女生的概率
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k2 0.500.40 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001 
 k0 0.460.71 1.32 2.07 2.71 3.84 5.024 6.635 7.879 10.828 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+ax2
(Ⅰ)记m(x)=f′(x),若m′(1)=3,求实数a的值;
(Ⅱ已知函数g(x)=f(x)-ax2+ax,若g(x)在(0,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知在侧棱垂直于底面的三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4点D是AB的中点.
(1)求证:AC1∥平面B1DC;
(2)求三棱锥A1-B1CD的体积.

查看答案和解析>>

同步练习册答案