精英家教网 > 高中数学 > 题目详情

【题目】已知函数,对于任意的实数恒成立.

1)求的值;

2)若,求证:.

【答案】1;(2)证明见解析.

【解析】

1)根据,可知,也为极小值,可得必要条件,求得;接着证明充分性,当时,利用导数可得函数单调性,从而知充分性成立,由此得到结果;

2)设,整理得到,构造函数,利用导数可证得,从而说明,得到,解不等式即可得到所证结论.

1)由题意得:.

恒成立,的最小值,也是的极小值,

则其必要条件,则,解得:

时,

时,;当时,

上单调递减,在上单调递增,

,可知充分性成立;

综上所述:.

2)由(1)可知:上单调递减,在上单调递增,

不妨设

,令,则

,则

上单调递减,

上单调递增,

,又

,解得:(舍),

综上所述:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着网购人数的日益增多,网上的支付方式也呈现一种多样化的状态,越来越多的便捷移动支付方式受到了人们的青睐,更被网友们评为“新四大发明”之一.随着人们消费观念的进步,许多人喜欢用信用卡购物,考虑到这一点,一种“网上的信用卡”横空出世——蚂蚁花呗.这是一款支付宝和蚂蚁金融合作开发的新支付方式,简单便捷,同时也满足了部分网上消费群体在支付宝余额不足时的“赊购”消费需求.为了调查使用蚂蚁花呗“赊购”消费与消费者年龄段的关系,某网站对其注册用户开展抽样调查,在每个年龄段的注册用户中各随机抽取100人,得到各年龄段使用蚂蚁花呗“赊购”的人数百分比如图所示.

1)由大数据可知,在1844岁之间使用花呗“赊购”的人数百分比y与年龄x成线性相关关系,利用统计图表中的数据,以各年龄段的区间中点代表该年龄段的年龄,求所调查群体各年龄段“赊购”人数百分比y与年龄x的线性回归方程(回归直线方程的斜率和截距保留两位有效数字);

2)该网站年龄为20岁的注册用户共有2000人,试估算该网站20岁的注册用户中使用花呗“赊购”的人数;

3)已知该网店中年龄段在18-26岁和27-35岁的注册用户人数相同,现从1835岁之间使用花呗“赊购”的人群中按分层抽样的方法随机抽取8人,再从这8人中简单随机抽取2人调查他们每个月使用花呗消费的额度,求抽取的两人年龄都在1826岁的概率.

参考答案:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知曲线C1x2+y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线ρ(2cosθ-sinθ)=6.

)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的2倍后得到曲线C2,试写出直线的直角坐标方程和曲线C2的参数方程.

)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|x-m|-|2x+2m|m0).

(Ⅰ)当m=1时,求不等式fx)≥1的解集;

(Ⅱ)若xRtR,使得fx+|t-1||t+1|,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,离心率,过椭圆右焦点的直线与椭圆交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存在直线,使得,若存在,求出直线的方程;若不存在,说明理由;

(Ⅲ)设点是一个动点,若直线的斜率存在,且中点,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据《环境空气质量指数技术规定(试行)》规定:空气质量指数在区间时,其对应的空气质量状况分别为优、良、轻度污染、中度污染、重度污染、严重污染.如图为某市2019101日至107日的空气质量指数直方图,在这7天内,下列结论正确的是( )

A.4的方差小于后3的方差

B.7天内空气质量状况为严重污染的天数为3

C.7天的平均空气质量状况为良

D.空气质量状况为优或良的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,过点于点,以为折痕把折起,当几何体的的体积最大时,则下列命题中正确的个数是( )

∥平面

与平面所成的角等于与平面所成的角

所成的角等于所成的角

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,求的切线方程;

2)若对任意时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)2|x1||x2|.

(1)f(x)的最小值m

(2)abc均为正实数,且满足abcm,求证:≥3.

查看答案和解析>>

同步练习册答案