【题目】若函数,关于的方程,给出下列结论
①存在这样的实数,使得方程有3个不同的实根
②不存在这样的实数,是的方程有4个不同的实根
③存在这样的实数,是的方程有5个不同的实根
④不存在这样的实数,是的方程有6个不同的实根
其中正确的个数是( )
A.1个B.2个C.3个D.4个
科目:高中数学 来源: 题型:
【题目】关于函数有下述四个结论:
①是偶函数;②在区间单调递减;
③在有个零点;④的最大值为.
其中所有正确结论的编号是( )
A.①②④B.②④C.①④D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,、为左、右焦点,焦距是实轴长的倍,双曲线过点.
(1)求双曲线的标准方程;
(2)若点在双曲线上,求证:点在以为直径的圆上;
(3)在(2)的条件下,若直线交双曲线于另一点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共有编号分别为1,2,3,4,5的五个座位,在甲同学不坐2号座位,乙同学不坐5号座位的条件下,甲、乙两位同学的座位号相加是偶数的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列.
(Ⅰ)求椭圆C的方程.
(Ⅱ)试探究是否为定值?若是,求出这个值;否 则求出它的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为降低空气污染,提高环境质量,政府决定对汽车尾气进行整治.某厂家生产甲、乙两种不同型号的汽车尾气净化器,为保证净化器的质量,分别从甲、乙两种型号的净化器中随机抽取100件作为样本进行产品性能质量评估,评估综合得分都在区间.已知评估综合得分与产品等级如下表:
根据评估综合得分,统计整理得到了甲型号的样本频数分布表和乙型号的样本频率分布直方图(图表如下).
甲型 乙型
(Ⅰ)从厂家生产的乙型净化器中随机抽取一件,估计这件产品为二级品的概率;
(Ⅱ)从厂家生产的乙型净化器中随机抽取3件,设随机变量为其中二级品的个数,求的分布列和数学期望;
(Ⅲ)根据图表数据,请自定标准,对甲、乙两种型号汽车尾气净化器的优劣情况进行比较.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左,右焦点分别为,且与短轴的一个端点Q构成一个等腰直角三角形,点P()在椭圆上,过点作互相垂直且与x轴不重合的两直线AB,CD分别交椭圆于A,B,C,D且M,N分别是弦AB,CD的中点
(1)求椭圆的方程
(2)求证:直线MN过定点R()
(3)求面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P—ABCD中,PAB为正三角形,四边形ABCD为炬形,平面PAB⊥平面ABCD.AB=2AD,M,N分别为PB,PC中点.
(1)求证:MN//平面PAD;
(2)求二面角B—AM—C的大小;
(3)在BC上是否存在点E,使得EN⊥平面AMV?若存在,求的值:若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com