4£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊe=$\sqrt{5}$£¬µãP1¡¢P2·Ö±ðÊÇÇúÏßCµÄÁ½Ìõ½¥½üÏßl1¡¢l2ÉϵÄÁ½µã£¬¡÷OP1P2£¨OΪ×ø±êÔ­µã£©µÄÃæ»ýΪ9£¬µãPÊÇÇúÏßCÉϵÄÒ»µã£¬ÇÒ$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$£®
£¨1£©Çó´ËË«ÇúÏߵķ½³Ì£»
£¨2£©ÉèµãMÊÇ´ËË«ÇúÏßCÉϵÄÈÎÒâÒ»µã£¬¹ýµãM·Ö±ð×÷l1¡¢l2µÄƽÐÐÏß½»l2¡¢l1ÓÚA¡¢BÁ½µã£¬ÊÔÖ¤£ºÆ½ÐÐËıßÐÎOAMBµÄÃæ»ýΪ¶¨Öµ£®
£¨3£©ÈôµãMÊÇ´ËË«ÇúÏßCÉϲ»Í¬ÓÚʵÖá¶ËµãµÄÈÎÒâÒ»µã£¬Éè¦È=¡ÏF1MF2£¨F1¡¢F2·Ö±ðΪ˫ÇúÏßCµÄ×ó¡¢ÓÒ½¹µã£©£¬ÇҦȡÊ[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{3}$]£¬ÊÔÇó|MF1|•|MF2|µÄ±ä»¯·¶Î§£®

·ÖÎö £¨1£©ÓÉË«ÇúÏßµÄÀëÐÄÂÊ$e=\frac{c}{a}=\sqrt{5}$£¬¿ÉµÃc=$\sqrt{5}a$£¬´Ó¶øµÃµ½Ë«ÇúÏߵĽ¥½üÏß·½³ÌΪy=¡À2x£¬Éè${P}_{1}£¨{x}_{1}£¬{y}_{1}£©£¬{P}_{2}£¨{x}_{2}£¬{y}_{2}£©£¬P£¨x£¬y£©\$£¬ÀûÓÃ$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$£¬°ÑPµÄ×ø±êÓÃP1¡¢P2µÄ×ø±ê±íʾ£¬ÔÙÓÉÓàÏÒ¶¨ÀíÇóµÃcos¡ÏP1OP2£¬½øÒ»²½µÃµ½sin¡ÏP1OP2£¬´úÈëÈý½ÇÐεÄÃæ»ý¹«Ê½µÃµ½P1¡¢P2ºá×ø±êµÄ»ý£¬½áºÏPµãÔÚË«ÇúÏßÉϽâµÃ£ºa2=4£¬ÔòË«ÇúÏß·½³Ì¿ÉÇó£»
£¨2£©ÉèM£¨x0£¬y0£©£¬Ôò$4{{x}_{0}}^{2}-{{y}_{0}}^{2}=16$£¬ÔÙÉè³öÒ»ÌõƽÐÐy=2xµÄÖ±Ïß·½³Ì£¬ÓëÖ±Ïßy=-2xÁªÁ¢£¬ÇóµÃ½»µã×ø±ê£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽÇó³öMµ½Ö±Ïßy=-2xµÄ¾àÀ룬´úÈëËıßÐÎÃæ»ý¹«Ê½¼´¿ÉµÃµ½Ö¤Ã÷£»
£¨3£©ÓÉMΪ˫ÇúÏß$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{16}=1$ÉÏÈÎÒâÒ»µã£¬ÀûÓÃË«ÇúÏߵĶ¨Òå¼°½¹µãÈý½ÇÐÎÖеÄÓàÏÒ¶¨Àí¿ÉµÃ$|M{F}_{1}|•|M{F}_{2}|=\frac{32}{1-cos¦È}$£¬ÔÙÓɦȡÊ[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{3}$]ÇóµÃ´ð°¸£®

½â´ð £¨1£©½â£º¡ßË«ÇúÏßµÄÀëÐÄÂÊ$e=\frac{c}{a}=\sqrt{5}$£¬¡àc=$\sqrt{5}a$£¬
Ôò$b=\sqrt{£¨\sqrt{5}a£©^{2}-{a}^{2}}=2a$£¬
¡àË«ÇúÏߵĽ¥½üÏß·½³ÌΪy=¡À2x£¬
Éè${P}_{1}£¨{x}_{1}£¬{y}_{1}£©£¬{P}_{2}£¨{x}_{2}£¬{y}_{2}£©£¬P£¨x£¬y£©\$£¬
Ôò$|O{P}_{1}|=\sqrt{5}{x}_{1}£¬|O{P}_{2}|=\sqrt{5}{x}_{2}$£¬$|{P}_{1}{P}_{2}|=\sqrt{5{{x}_{1}}^{2}+5{{x}_{2}}^{2}+6{x}_{1}{x}_{2}}$£¬
¡ß$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$£¬
¡à$x=\frac{{x}_{1}+2{x}_{2}}{2}£¬y=\frac{2{x}_{1}-4{x}_{2}}{3}$£¬¼´P£¨$\frac{{x}_{1}+2{x}_{2}}{2}£¬\frac{2{x}_{1}-4{x}_{2}}{3}$£©£¬
¿ÉÖªËùÇóË«ÇúÏß·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{4{a}^{2}}=1$£¬
¡ßµãPÔÚË«ÇúÏßÉÏ£¬
¡à$8{x}_{1}{x}_{2}=9{a}^{2}$£¬¢Ù
¡ß$cos¡Ï{P}_{1}O{P}_{2}=\frac{£¨\sqrt{5}{x}_{1}£©^{2}+£¨\sqrt{5}{x}_{2}£©^{2}-£¨5{{x}_{1}}^{2}+5{{x}_{2}}^{2}+6{x}_{1}{x}_{2}£©}{2¡Á\sqrt{5}{x}_{1}¡Á\sqrt{5}{x}_{2}}=-\frac{3}{5}$£¬
¡à$sin¡Ï{P}_{1}O{P}_{2}=\sqrt{1-£¨-\frac{3}{5}£©^{2}}=\frac{4}{5}$£®
ÓÖ¡ß${S}_{¡÷O{P}_{1}{P}_{2}}=\frac{1}{2}|O{P}_{1}|•|O{P}_{2}|•sin¡Ï{P}_{1}O{P}_{2}$=$\frac{1}{2}•\sqrt{5}{x}_{1}•\sqrt{5}{x}_{2}•\frac{4}{5}=2{x}_{1}{x}_{2}=9$£¬¢Ú
ÁªÁ¢¢Ù¢Ú½âµÃ£ºa2=4£¬Ôòb2=16£¬
¡àËùÇóË«ÇúÏß·½³ÌΪ$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{16}=1$£»
£¨2£©Ö¤Ã÷£ºÉèM£¨x0£¬y0£©£¬Ôò$4{{x}_{0}}^{2}-{{y}_{0}}^{2}=16$£®
¡ßË«ÇúÏßCµÄ½¥½üÏß·½³ÌΪy=¡À2x£¬
¡àÉèÆäÖÐÒ»ÌõƽÐÐy=2xµÄÖ±Ïß·½³ÌΪy-y0=2£¨x-x0£©£¬¼´y=2x+y0-2x0£®
ÁªÁ¢$\left\{\begin{array}{l}{y=2x+{y}_{0}-2{x}_{0}}\\{y=-2x}\end{array}\right.$£¬½âµÃ$x=\frac{2{x}_{0}-{y}_{0}}{4}£¬y=\frac{{y}_{0}-2{x}_{0}}{2}$£¬
¡à²»·ÁÉèµãA£¨$\frac{2{x}_{0}-{y}_{0}}{4}£¬\frac{{y}_{0}-2{x}_{0}}{2}$£©£¬Ôò|OA|=$\frac{\sqrt{5}}{4}|2{x}_{0}-{y}_{0}|$£¬
ÓÖµãMµ½Ö±Ïßy=-2xµÄ¾àÀëd=$\frac{|2{x}_{0}+{y}_{0}|}{\sqrt{5}}$£¬
¡à${S}_{ËıßÐÎOAMB}=|OA|•d=\frac{\sqrt{5}}{4}|2{x}_{0}-{y}_{0}|•\frac{|2{x}_{0}+{y}_{0}|}{\sqrt{5}}$=$\frac{1}{4}|4{{x}_{0}}^{2}-{{y}_{0}}^{2}|=\frac{1}{4}¡Á16=4$£¨¶¨Öµ£©£»
£¨3£©½â£º¡ßMΪ˫ÇúÏß$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{16}=1$ÉÏÈÎÒâÒ»µã£¬
¡à|MF1|-|MF2|=¡À4£¬ÓÖ¦È=¡ÏF1MF2 £¬
¡à$4{c}^{2}=|M{F}_{1}{|}^{2}+|M{F}_{2}{|}^{2}-2|M{F}_{1}|•|M{F}_{2}|cos¦È$£¬
¼´$4¡Á20=£¨|M{F}_{1}|-|M{F}_{2}|£©^{2}+2|M{F}_{1}|•|M{F}_{2}|-2|M{F}_{1}|•|M{F}_{2}|cos¦È$£¬
¡à80=16+2|MF1|•|MF2|£¨1-cos¦È£©£¬
¼´$|M{F}_{1}|•|M{F}_{2}|=\frac{32}{1-cos¦È}$£®
¡à¦È¡Ê[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{3}$]£¬¡àcos¦È¡Ê[$\frac{1}{2}£¬\frac{\sqrt{2}}{2}$]£¬
Ôò1-cos¦È¡Ê[1-$\frac{\sqrt{2}}{2}$£¬$\frac{1}{2}$]£¬
¡à$|M{F}_{1}|•|M{F}_{2}|=\frac{32}{1-cos¦È}$¡Ê[64£¬64+32$\sqrt{2}$]£®

µãÆÀ ±¾Ì⿼²éË«ÇúÏߵļòµ¥ÐÔÖÊ£¬¿¼²éÁËË«ÇúÏß·½³ÌµÄÇ󷨣¬¸ÃÌâ°ÑÇó½âÈý½ÇÐκÍԲ׶ÇúÏßÎÊÌâ½øÐÐÁ˽áºÏ£¬Ôö¼ÓÁË˼άÄѶȣ¬ÇÒÔËËãÁ¿¹ý´ó£¬µÚ¶þÎÊÖеĶ¨ÖµÎÊÌ⣬ÌåÏÖÁËÕûÌåÔËËã˼Ïë·½·¨£®¸ÃÌâÊôÓڸ߿¼ÊÔ¾íÖеÄѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®$f£¨x£©=\left\{\begin{array}{l}a{x^2}+1£¬x¡Ý0\\£¨{a^2}-1£©{e^{ax}}£¬x£¼0\end{array}\right.$¶Ô¶¨ÒåÓòÄÚµÄÈÎÒâʵÊýx¶¼ÓÐ$\lim_{¡÷x¡ú0}\frac{f£¨x+¡÷x£©-f£¨x£©}{¡÷x}£¾0$£¨ÆäÖС÷x±íʾ×Ô±äÁ¿µÄ¸Ä±äÁ¿£©£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ$£¨1£¬\sqrt{2}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼËùʾ£¬ÔÚÌÝÐÎABCDÖУ¬AB=10£¬CD=4£¬AD=BC=5£¬¶¯µãP´ÓBµã¿ªÊ¼ÑØ×ÅÕÛÏßBC£¬CD£¬DAÇ°½øÖÁA£¬ÈôPµãÔ˶¯µÄ·³ÌΪx£¬¡÷PABµÄÃæ»ýΪy£®

£¨1£©Çóy=f£¨x£©µÄ½âÎöʽ£¬²¢Ö¸³öº¯ÊýµÄ¶¨ÒåÓò£»
£¨2£©»­³öº¯ÊýµÄͼÏó²¢Ð´³öº¯ÊýµÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¶¨ÒåijÖÖÔËËãS=a?b£¬ÔËËãÔ­ÀíÈçͼËùʾ£¬Ôòʽ×Ó£º$sin\frac{5¦Ð}{3}?ln\frac{1}{e}+{£¨\frac{1}{3}£©^{-\frac{1}{2}}}?lg100$µÄÖµÊÇ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$2\sqrt{3}$C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®C1µÄ²ÎÊý·½³Ìʽ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬A£¨¦Ñ1£¬¦È0£©ºÍ£¨¦Ñ2£¬¦È0+$\frac{¦Ð}{2}$£©¶¼ÔÚÇúÏßC1ÉÏ£¬$\frac{1}{{{¦Ñ}_{1}}^{2}}$+$\frac{1}{{{¦Ñ}_{2}}^{2}}$=$\frac{5}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ëæ»úµØ´ÓÇø¼ä[0£¬1]ÈÎÈ¡Á½Êý£¬·Ö±ð¼ÇΪx¡¢y£¬Ôòx2+y2¡Ü1µÄ¸ÅÂÊP=£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{2}$C£®$\frac{¦Ð}{4}$D£®1-$\frac{¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ö±Ïßx=2±»Ô²£¨x+1£©2+y2=25Ëù½ØµÃµÄÏÒ³¤µÈÓÚ£¨¡¡¡¡£©
A£®2$\sqrt{6}$B£®4C£®4$\sqrt{6}$D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬¡÷ABCµÄÍâ½ÓԲΪ¡ÑO£¬ÑÓ³¤CBÖÁQ£¬ÔÙÑÓ³¤QAÖÁP£¬Ê¹µÃQC2-QA2=BC•QC£®
£¨¢ñ£©ÇóÖ¤£ºQAΪ¡ÑOµÄÇÐÏߣ»
£¨¢ò£©ÈôACÇ¡ºÃΪ¡ÏBAPµÄƽ·ÖÏߣ¬AB=10£¬AC=15£¬ÇóQAµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÉèHΪÈñ½Ç¡÷ABCµÄ´¹ÐÄ£¬¹ýµãH×÷BHµÄ´¹Ïߣ¬ÓëAB½»ÓÚD£¬¹ýµãH×÷CHµÄ´¹Ïߣ¬ÓëAC½»ÓÚµãE£¬µãC×÷BCµÄ´¹Ïߣ¬ÓëÖ±ÏßDE½»ÓÚµãF£¬Ö¤Ã÷FH=FC£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸